Introduction and
Optimization Problems

John Guttag

MIT Department of Electrical Engineering and
Computer Science

6.0002 Prerequisites

sExperience writing object-oriented programs in Python
o Preferably in Python 3.5

=Familiarity with concepts of computational complexity
=sFamiliarity with some simple algorithms

=5.0001 sufficient

Question 1

6.0002 LECTURE 1 2

Some Administrative Things

="Problem sets

o Programming problems designed to
o Improve your programming skills
° Help you learn the conceptual material

" Introduction to

"Finger exercises " Computation
> Very small programming problems @ LRAGEIEIINTTITE!
designed to help you learn a single ‘Using Python
programming conce pt ‘J With}pislicatioq_m Underetandifig Data

=Reading assignments in textbook

o> Another take on and more details
about material covered by lectures
and problem sets

"Exam: based on above

6.0002 LECTURE 1 3

How Does It Compare to 6.00017

"Programming assignments a bit easier

° Focus more on the problem to be solved than on
programming

" ecture content more abstract
=L ectures will be a bit faster paced

" ess about learning to program, more about dipping
your toe into data science

6.0002 LECTURE 1 4

Honing Your Programming Skills

=A few additional bits of Python
sSoftware engineering
=Using packages

"How do you get to Carnegie Hall?

6.0002 LECTURE 1 5

Computational Models

=Using computation to help understand the world in
which we live

"Experimental devices that help us to understand
something that has happened or to predict the future

——

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faqg-fair-use.

="Optimization models
=Statistical models

=Simulation models

6.0002 LECTURE 1 6

https://ocw.mit.edu/help/faq-fair-use

Relevant Reading for Today’s Lecture

=Section 12.1

=Section 5.4 (lambda functions)

6.0002 LECTURE 1 7

Computational Models

=Using computation to help understand the world in
which we live

"Experimental devices that help us to understand

something that has happened or to predict the future

'-.-_IJ

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see |https://ocw.mit.edu/help/faq-fair-use.

=Optimization models
=Statistical models

=Simulation models

6.0002 LECTURE 1 8

https://ocw.mit.edu/help/faq-fair-use

What Is an Optimization Model?

= An objective function that 1s to be maximized or
minimized, e.g.,
o Minimize time spent traveling from New York to Boston

" A set of constraints (possibly empty) that must be
honored, e.g.,

o Cannot spend more than $100 e e,

tripadvisor: x e
. *+ travelocity'
> Must be in Boston before 5:00PM P ORBITZ
Hotwire
Frommers' 9 tot
D Expedia il
@ﬁﬁﬁ easytobOOJ_(_u
@HOTELRI SERVATIONS.COM get a ggaodm

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faqg-fair-use.

6.0002 LECTURE 1 9

https://ocw.mit.edu/help/faq-fair-use

Knapsack Problems

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
6.0002 LECTURE 1

https://ocw.mit.edu/help/faq-fair-use

Knapsack Problem

=*You have limited strength, so there is a maximum
weight knapsack that you can carry

=*You would like to take more stuff than you can carry

"How do you choose which stuff to take and which to
leave behind?

=Two variants
> 0/1 knapsack problem

o Continuous or fractional knapsack problem

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
6.0002 LECTURE 1

11

https://ocw.mit.edu/help/faq-fair-use

My Least-favorite Knapsack Problem

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see phttps://ocw.mit.edu/help/fag-fair-use.

6.0002 LECTURE 1

https://ocw.mit.edu/help/faq-fair-use

0/1 Knapsack Problem, Formalized

"Each item is represented by a pair, <value, weight>

"The knapsack can accommodate items with a total
weight of no more than w

"A vector, L, of length n, represents the set of
available items. Each element of the vector is an
item

"A vector, V, of length n, is used to indicate whether
or not items are taken. If V[i] = 1, item [[i] is taken.
If V[i] =0, item [[i] is not taken

6.0002 LECTURE 1 13

0/1 Knapsack Problem, Formalized

Find a V that maximizes
n-1
ZV[i] * I[i]value
i=0

subject to the constraint that

n-1
B VLl * I[i] weight < w
i=0

Brute Force Algorithm

=]1. Enumerate all possible combinations of items. That
is to say, generate all subsets of the set of items. This is
called the power set.

=) . Remove all of the combinations whose total units
exceeds the allowed weight.

=3. From the remaining combinations choose any one
whose value is the largest.

6.0002 LECTURE 1 15

Often Not Practical

"How big is power set?

="Recall

o A vector, V, of length n, is used to indicate whether or not
items are taken. If V[i] =1, item [[i] is taken. If V[i] =0, item [[i]
is not taken

"How many possible different values can V have?

o As many different binary numbers as can be represented
in n bits

"For example, if there are 100 items to choose from, the
power set is of size?

> 1,267,650,600,228,229,401,496,703,205,376

Question 2

6.0002 LECTURE 1 16

Are We Just Being Stupid?

=Alas, no
=0/1 knapsack problem is inherently exponential

"But don’t despair

6.0002 LECTURE 1

17

Greedy Algorithm a Practical Alternative

*while knapsack not full
put “best” available 1tem in knapsack

="But what does best mean?
o Most valuable

o Least expensive
o Highest value/units

6.0002 LECTURE 1

18

An Example

=You are about to sit down to
a meal

*You know how much you

value different foods, e.g.,
you like donuts more than
apples

"But you have a calorie
budget, e.g., you don’t want
to consume more than 750
calories

"Choosing what to eat is a
knapsack problem

6.0002 LECTURE 1

19

A Menu

Food | wine | beer | pizza | burger | fres | coke | apple | donut
30 50 90 79 90 10

Value 89 90

calories 123 154 258 354 365 150 95 195

" et’s look at a program that we can use to decide what
to order

6.0002 LECTURE 1 20

Class Food

class Food(object):
def __init__(self, n, v, w):
self.name = n
self.value = v
self.calories = w

def getValue(self):
return self.value

def getCost(self):
return self.calories

def density(self):
return self.getValue()/self.getCost()

def __str_ _(self):

return self.name + ': <' + str(self.value)\

+ ', + str(self.calories) + '>'

6.0002 LECTURE 1

21

Build Menu of Foods

def buildMenu(names, values, calories):
"""names, values, calories lists of same length.
name a list of strings
values and calories 1lists of numbers
returns list of Foods"""
menu = []
for 1 i1n range(len(values)):
menu.append(Food(names[1], values[1],
calories[i1]))
return menu

6.0002 LECTURE 1 22

Implementation of Flexible Greedy

def greedy(items, maxCost, keyFunction):
"""Assumes 1tems a list, maxCost >= O,
keyFunction maps elements of items to numbers"™"
1temsCopy = sorted(items, key = keyFunction, <——
reverse = True)
result = []
totalValue, totalCost = 0.0, 0.0

for 1 in range(len(itemsCopy)) : <
1f (totalCost+itemsCopy[i].getCost()) <= maxCost:
result.append(itemsCopy[i])
totalCost += i1temsCopy[i].getCost()
totalValue += itemsCopy[i].getValue()

return (result, totalValue)

6.0002 LECTURE 1 23

Algorithmic Efficiency

def greedy(items, maxCost, keyFunction):
—— T1temsCopy = sorted(items, key = keyFunction,
reverse = True)
result = []
totalValue, totalCost = 0.0, 0.0

for 1 in range(len(itemsCopy)): <
1f (totalCost+itemsCopy[i].getCost()) <= maxCost:
result.append(itemsCopy[1])
totalCost += itemsCopy[i].getCost()
totalValue += itemsCopy[i].getValue()

return (result, totalValue)

Question 3

6.0002 LECTURE 1 24

Using greedy

def testGreedy(items, constraint, keyFunction):
taken, val = greedy(items, constraint, keyFunction)
print('Total value of items taken =', val)
for item in taken:
print(’ ', 1tem)

6.0002 LECTURE 1

25

Using greedy

def testGreedys(maxUnits):

print('Use greedy by value to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits, Food.getValue)

print('\nUse greedy by cost to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits,

Tambda x: 1/Food.getCost(x)) <

print('\nUse greedy by density to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits, Food.density)

testGreedys(800) ?

6.0002 LECTURE 1 26

lambda

"lambda used to create anonymous functions
> Tambda <id,, id,, ... id,>: <expression>
o Returns a function of n arguments

=Can be very handy, as here
"Possible to write amazing complicated lambda expressions

*Don’t—use def instead

6.0002 LECTURE 1 27

Using greedy

def testGreedys(foods, maxUnits):

print('Use greedy by value to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits, Food.getValue)

print('\nUse greedy by cost to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits,

Tambda x: 1/Food.getCost(x))

print('\nUse greedy by density to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits, Food.density)

names = ['wine', 'beer', 'pizza', 'burger', 'fries',
'cola', 'apple', 'donut', 'cake']

values = [89,90,95,100,90,79,50,10]

calories = [123,154,258,354,365,150,95,195]

foods = buildMenu(names, values, calories)

testGreedys(foods, 750)
Run code

6.0002 LECTURE 1 28

Why Different Answers?

=sSequence of locally “optimal” choices don’t always
yield a globally optimal solution

"|s greedy by density always a winner?
o Try testGreedys(foods, 1000)

6.0002 LECTURE 1

29

The Pros and Cons of Greedy

=Easy to implement

"Computationally efficient

"But does not always yield the best solution
> Don’t even know how good the approximation is

"|In the next lecture we’ll look at finding truly optimal
solutions

6.0002 LECTURE 1

30

MIT OpenCourseWare
https://ocw.mit.edu

6.0002 Introduction to Computational Thinking and Data Science
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

