Third Edition

Patrick Henry Winston
Professor of Computer Science

Director, Artificial Intelligence Laboratory
Massachusetts Institute of Technology

A

vy

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts B Menlo Park, California

New York m Don Mills, Ontario ® Wokingham, England
Amsterdam B Bonn ® Sydney B Singapore 8 Tokyo
Madrid ® San Juan ® Milan m Paris

Library of Congress Cataloging-in-Publication Data
Winston, Patrick Henry.

Artificial Intelligence / Patrick Henry Winston. — 3rd ed.

p. cm.
Includes bibliographical references (p.) and index.
ISBN 0-201-53377-4

1. Artificial Intelligence. I. Title.
Q335.W56 1992
006.3—dc20

91-41385
CIP

Reproduced by Addison-Wesley from camera-ready copy supplied by the author.

Reprinted with corrections May, 1993

Copyright (©) 1992 by Patrick H. Winston. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission. Printed in the United States of

America.

56 7 89 10 MU 9594

ACKNOWLEDGMENTS

SOFTWARE

PREFACE

PART | mssss—
Representations and Methods

CHAPTER 1 A
The Intelligent Computer

The Field and the Book

This Book Has Three Parts 6 m The Long-Term Applications Stagger the
Imagination 6 m The Near-Term Applications Involve New Opportunities 7
m Artificial Intelligence Sheds New Light on Traditional Questions 7 =
Artificial Intelligence Helps Us to Become More Intelligent 8

What Artificial Intelligence Can Do

Intelligent Systems Can Help Experts to Solve Difficult Analysis Problems 8
| Intelligent Systems Can Help Experts to Design New Devices 9 m In-
telligent Systems Can Learn from Examples 10 m Intelligent Systems Can

Contents

Provide Answers to English Questions Using both Structured Data and Free
Text 11 m Artificial Intelligence Is Becoming Less Conspicuous, yet More
Essential 12

Criteria for Success
Summary

Background

CHAPTER 2]
Semantic Nets and Description Matching

Semantic Nets

Good Representations Are the Key to Good Problem Solving 16 m Good
Representations Support Explicit, Constraint-Exposing Description 18mA
Representation Has Four Fundamental Parts 18 m Semantic Nets Convey
Meaning 19 @ There Are Many Schools of Thought About the Mean-
ing of Semantics 20 m Theoretical Equivalence Is Different from Practical
Equivalence 22

The Describe-and-Match Method

Feature-Based Object Identification lllustrates Describe and Match 24
The Describe-and-Match Method and Analogy

Problems

Geometric Analogy Rules Describe Object Relations and Object Transfor-
mations 25 m Scoring Mechanisms Rank Answers 30 @ Ambiguity
Complicates Matching 32 m Good Representation Supports Good Per-
formance 32

The Describe-and-Match Method and Recognition
of Abstractions

Story Plots Can Be Viewed as Combinations of Mental States and Events 33
m Abstraction-Unit Nets Enable Summary 36 m Abstraction Units Enable
Question Answering 41 m Abstraction Units Make Patterns Explicit 42

Problem Solving and Understanding Knowledge
Summary

Background

CHAPTER 3]
Generate and Test, Means-Ends Analysis,
and Problem Reduction

The Generate-and-Test Method

Generate-and-Test Systems Often Do Identification 48 m Good Genera-
tors Are Complete, Nonredundant, and Informed 49

13
13
14

15
16

22

25

33

42

45

47
47

The Means-Ends Analysis Method

The Key Idea in Means-Ends Analysis Is to Reduce Differences 50 m Den-
dral Analyzes Mass Spectrograms 51 m Difference-Procedure Tables Often
Determine the Means 53

The Problem-Reduction Method

Moving Blocks lllustrates Problem Reduction 54 m The Key Idea in Problem
Reduction Is to Explore a Goal Tree 56 m Goal Trees Can Make Procedure
Interaction Transparent 57 ®m Goal Trees Enable Introspective Question
Answering 59 ®m Problem Reduction Is Ubiquitous in Programming 60
B Problem-Solving Methods Often Work Together 60 m Mathematics
Toolkits Use Problem Reduction to Solve Calculus Problems 61

Summary

Background

CHAPTER 4 e
Nets and Basic Search

Blind Methods

Net Search Is Really Tree Search 64 m Search Trees Explode Exponen-
tially 66 m Depth-First Search Dives into the Search Tree 66 m Breadth-
First Search Pushes Uniformly into the Search Tree 68 ® The Right Search
Depends on the Tree 68 m Nondeterministic Search Moves Randomly into
the Search Tree 69

Heuristically Informed Methods

Quality Measurements Turn Depth-First Search into Hill Climbing 70 =
Foothills, Plateaus, and Ridges Make Hills Hard to Climb 72 m Beam Search
Expands Several Partial Paths and Purges the Rest 73 m Best-First Search
Expands the Best Partial Path 75 m Search May Lead to Discovery 75 m
Search Alternatives Form a Procedure Family 78

Summary

Background

CHAPTER 5]
Nets and Optimal Search

The Best Path

The British Museum Procedure Looks Everywhere 81 m Branch-and-Bound
Search Expands the Least-Cost Partial Path 82 m Adding Underestimates
Improves Efficiency 84

50

53

60

60

63

63

69

78
79

81
81

vi

Contents

Redundant Paths

Redundant Partial Paths Should Be Discarded 90 m Underestimates and
Dynamic Programming Improve Branch-and-Bound Search 91 m Several
search Procedures Find the Optimal Path 94 m Robot Path Planning Illus-
trates Search 94

Summary

Background

CHAPTER 6]
Trees and Adversarial Search

Algorithmic Methods

Nodes Represent Board Positions 101 m Exhaustive Search Is Impossi-
ble 102 m The Minimax Procedure Is a Lookahead Procedure 103 w The
Alpha-Beta Procedure Prunes Game Trees 104 m Alpha-Beta May Not
Prune Many Branches from the Tree 110

Heuristic Methods

Progressive Deepening Keeps Computing Within Time Bounds 114 m
Heuristic Continuation Fights the Horizon Effect 114 m Heuristic Pruning
Also Limits Search 115 m DEEP THOUGHT Plays Grandmaster Chess 117

Summary

Background

CHAPTER 7]
Rules and Rule Chaining

Rule-Based Deduction Systems

Many Rule-Based Systems Are Deduction Systems 120 m A Toy Deduction
System Identifies Animals 121 m Rule-Based Systems Use a Working Mem-
ory and a Rule Base 124 m Deduction Systems May Run Either Forward or
Backward 126 m The Problem Determines Whether Chaining Should Be
Forward or Backward 128

Rule-Based Reaction Systems

Mycin Diagnoses Bacterial Infections of the Blood 130 m A Toy Reaction
System Bags Groceries 132 m Reaction Systems Require Conflict Resolu-
tion Strategies 137

Procedures for Forward and Backward Chaining

Depth-First Search Can Supply Compatible Bindings for Forward Chain-
ing 138 m XCON Configures Computer Systems 139 = Depth-First
Search Can Supply Compatible Bindings for Backward Chaining 142 n

90

99
100

101
101

113

116
118

119
119

129

137

Relational Operations Support Forward Chaining 147 m The Rete Ap-
proach Deploys Relational Operations Incrementally 152

Summary

Background

CHAPTER 8 N
Rules, Substrates, and Cognitive Modeling

Rule-based Systems Viewed as Substrate

Explanation Modules Explain Reasoning 163 m Reasoning Systems Can
Exhibit Variable Reasoning Styles 164 m Probability Modules Help You to
Determine Answer Reliability 167 m Two Key Heuristics Enable Knowl-
edge Engineers to Acquire Knowledge 167 m Acquisition Modules Assist
Knowledge Transfer 168 m Rule Interactions Can Be Troublesome 171 m
Rule-Based Systems Can Behave Like Idiot Savants 171

Rule-Based Systems Viewed as Models for Human
Problem Solving

Rule-Based Systems Can Model Some Human Problem Solving 172 =m
Protocol Analysis Produces Production-System Conjectures 172 m SOAR
Models Human Problem Solving, Maybe 173 m SOAR Searches Problem
Spaces 173 m SOAR Uses an Automatic Preference Analyzer 175

Summary

Background

CHAPTER 9 N
Frames and Inheritance

Frames, Individuals, and Inheritance

Frames Contain Slots and Slot Values 180 m Frames may Describe In-
stances or Classes 180 m Frames Have Access Procedures 182 m Inheri-
tance Enables When-Constructed Procedures to Move Default Slot Values
from Classes to Instances 182 m A Class Should Appear Before All its Su-
perclasses 185 m A Class’s Direct Superclasses Should Appear in Order 187
m The Topological-Sorting Procedure Keeps Classes in Proper Order 190

Demon Procedures

When-Requested Procedures Override Slot Values 197 m When-Read and
When-Written Procedures Can Maintain Constraints 198 m With-Respect-
to Procedures Deal with Perspectives and Contexts 199 & Inheritance and
Demons Introduce Procedural Semantics 199 m Object-Oriented Program-
ming Focuses on Shared Knowledge 201

160
161

163
163

172

176
177

179
179

197

viii

Contents

Frames, Events, and Inheritance

Digesting News Seems to Involve Frame Retrieving and Slot Filling 202 m
Event-Describing Frames Make Stereotyped Information Explicit 206

Summary

Background

CHAPTER 10 R
Frames and Commonsense

Thematic-role Frames

An Object's Thematic Role Specifies the Object’s Relation to an Action 209
m Filled Thematic Roles Help You to Answer Questions 212 m Various
Constraints Establish Thematic Roles 214 m A Variety of Constraints Help
Establish Verb Meanings 215 m Constraints Enable Sentence Analysis 216
m Examples Using Take lllustrate How Constraints Interact 218

Expansion into Primitive Actions

Primitive Actions Describe Many Higher-Level Actions 221 m Actions Of-
ten Imply Implicit State Changes and Cause-Effect Relations 222 m Actions
Often Imply Subactions 223 m Primitive-Action Frames and State-Change
Frames Facilitate Question Answering and Paraphrase Recognition 224 m
Thematic-Role Frames and Primitive-Action Frames Have Complementary
Foci 226 m CYC Captures Commonsense Knowledge 229

Summary

Background

CHAPTER 11 ————
Numeric Constraints and Propagation

Propagation of Numbers Through Numeric
Constraint Nets

Numeric Constraint Boxes Propagate Numbers through Equations 231
Propagation of Probability Bounds Through
Opinion Nets

Probability Bounds Express Uncertainty 234 m Spreadsheets Propagate
Numeric Constraints Through Numeric-Constraint Nets 235 a Venn Di-
agrams Explain Bound Constraints 237 m Propagation Moves Probability
Bounds Closer Together 241

Propagation of Surface Altitudes Through Arrays

Local Constraints Arbitrate between Smoothness Expectations and Actual
Data 242 m Constraint Propagation Achieves Global Consistency through

202

206
206

209
209

221

228
228

231

231

234

241

Local Computation 244 m GENINFER Helps Counselors to Provide Precise
Genetic Advice 246

Summary

Background

CHAPTER 1 2 e
Symbolic Constraints and Propagation

Propagation of Line Labels through Drawing
Junctions

There Are Only Four Ways to Label a Line in the Three-Faced-Vertex World 250

m There Are Only 18 Ways to Label a Three-Faced Junction 254 m Finding
Correct Labels Is Part of Line-Drawing Analysis 257 m Waltz's Procedure
Propagates Label Constraints through Junctions 262 m Many Line and
Junction Labels Are Needed to Handle Shadows and Cracks 266 m Illumi-
nation Increases Label Count and Tightens Constraint 267 m The Flow of
Labels Can Be Dramatic 270 m The Computation Required Is Proportional
to Drawing Size 272

Propagation of Time-Interval Relations

There Are 13 Ways to Label a Link between Interval Nodes Yielding 169
Constraints 272 m Time Constraints Can Propagate across Long Dis-
tances 275 m A Complete Time Analysis Is Computationally Expensive 276
m Reference Nodes Can Save Time 278

Five Points of Methodology
Summary

Background

CHAPTER 1 3 N
Logic and Resolution Proof

Rules of Inference

Logic Has a Traditional Notation 284 m Quantifiers Determine When Ex-
pressions Are True 287 m Logic Has a Rich Vocabulary 288 m Interpre-
tations Tie Logic Symbols to Worlds 288 m Proofs Tie Axioms to Conse-
quences 290 m Resolution Is a Sound Rule of Inference 292

Resolution Proofs

Resolution Proves Theorems by Refutation 293 m Using Resolution Re-
quires Axioms to Be in Clause Form 294 m Proof Is Exponential 300 =
Resolution Requires Unification 301 m Traditional Logic Is Monotonic 302

245
248

249

249

272

278
280
280

283
283

293

Contents

m Theorem Proving Is Suitable for Certain Problems, but Not for All Prob-
lems 302

Summary

Background

CHAPTER 14]
Backtracking and Truth Maintenance

Chronological and Dependency-Directed
Backtracking

Limit Boxes Identify Inconsistencies 305 m- Chronological Backtracking
Wastes Time 306 m Nonchronological Backtracking Exploits Dependen-
cies 308

Proof by Constraint Propagation

Truth Can Be Propagated 309 m Truth Propagation Can Establish Jus-
tifications 315 m Justification Links Enable Programs to Change Their
Minds 316 m Proof by Truth Propagation Has Limits 319

Summary

Background

CHAPTER 15 e
Planning

Planning Using If-Add-Delete Operators

Operators Specify Add Lists and Delete Lists 324 m You Can Plan by
Searching for a Satisfactory Sequence of Operators 326 ® Backward
Chaining Can Reduce Effort 327 ® Impossible Plans Can Be Detected 331
@ Partial Instantiation Can Help Reduce Effort Too 336

Planning Using Situation Variables

Finding Operator Sequences Requires Situation Variables 338 m Frame
Axioms Address the Frame Problem 343

Summary

Background

303

304

305

305

309

320

320

323

323

338

345

346

PART || m————
Learning and Regularity Recognition

CHAPTER 16 |
Learning by Analyzing Differences

Induction Heuristics

Responding to Near Misses Improves Models 351 m Responding to Ex-
amples Improves Models 354 m Near-Miss Heuristics Specialize; Example
Heuristics Generalize 355 m Learning Procedures Should Avoid Guesses 357
8 Learning Usually Must Be Done in Small Steps 358

Identification

Must Links and Must-Not Links Dominate Matching 359 ® Models May
Be Arranged in Lists or in Nets 359 m ARIEL Learns about Proteins 360

Summary

Background

CHAPTER 17]
Learning by Explaining Experience

Learning about Why People Act the Way they Do

Reification and the Vocabulary of Thematic-Role Frames Capture Sentence-
Level Meaning 366 m Explanation Transfer Solves Problems Using Anal-
ogy 367 m Commonsense Problem Solving Can Generate Rulelike Prin-
ciples 372 m The Macbeth Procedure lllustrates the Explanation Princi-
ple 373 m The Macbeth Procedure Can Use Causal Chains to Establish
Common Context 374

Learning about Form and Function

Examples and Precedents Help Each Other 377 m Explanation-Based
Learning Offers More than Speedup 380

Matching

Stupid Matchers Are Slow and Easy to Fool 380 m Matching Inexact
Situations Reduces to Backward Chaining 381 m Matching Sheds Light
on Analogical Problem Solving 383

Summary

Background

CHAPTER 18 [
Learning by Correcting Mistakes

Isolating Suspicious Relations
Cups and Pails lllustrate the Problem 385 m Near-Miss Groups Isolate

347

349

349

359

362
363

365
365

376

380

383
384

385
385

Contents

Suspicious Relations 386 & Suspicious Relation Types Determine Overall
Repair Strategy 388
Intelligent Knowledge Repair

The Solution May Be to Explain the True-Success Suspicious Relations 388
B Incorporating True-Success Suspicious Relations May Require Search 391
@ The Solution May Be to Explain the False-Success Suspicious Relations,
Creating a Censor 393 m Failure Can Stimulate a Search for More Detailed
Descriptions 395

Summary

Background

CHAPTER 19 I
Learning by Recording Cases

Recording and Retrieving Raw Experience

The Consistency Heuristic Enables Remembered Cases to Supply Proper-
ties 397 m The Consistency Heuristic Solves a Difficult Dynamics Prob-
lem 398

Finding Nearest Neighbors

A Fast Serial Procedure Finds the Nearest Neighbor in Logarithmic Time 403
® Parallel Hardware Finds Nearest Neighbors Even Faster 408

Summary

Background

CHAPTER 20 L
Learning by Managing Multiple Models

The Version-Space Method
Version Space Consists of Overly General and Overly Specific Models 411

B Generalization and Specialization Leads to Version-Space Convergence 414

Version-Space Characteristics

The Version-Space Procedure Handles Positive and Negative Examples Sym-
metrically 420 m The Version-Space Procedure Enables Early Recogni-
tion 421

388

396

396

397

397

403

408

409

411

411

420

Summary

Background

CHAPTER 21 -
Learning by Building ldentification Trees

From Data to Identification Trees

The World Is Supposed to Be Simple 423 m Tests Should Minimize Disor-
der 427 m Information Theory Supplies a Disorder Formula 427

From Trees to Rules

Unnecessary Rule Antecedents Should Be Eliminated 432 m Optimizing a
Nuclear Fuel Plant 433 m Unnecessary Rules Should Be Eliminated 435 m
Fisher's Exact Test Brings Rule Correction in Line with Statistical Theory 437

Summary

Background

CHAPTER 22 I
Learning by Training Neural Nets

Simulated Neural Nets

Real Neurons Consist of Synapses, Dendrites, Axons, and Cell Bodies 444
m Simulated Neurons Consist of Multipliers, Adders, and Thresholds 445
m Feed-Forward Nets Can Be Viewed as Arithmetic Constraint Nets 446
m Feed-Forward Nets Can Recognize Regularity in Data 447

Hill Climbing and Back Propagation

The Back-Propagation Procedure Does Hill Climbing by Gradient Ascent 448
m Nonzero Thresholds Can Be Eliminated 449 m Gradient Ascent Requires
a Smooth Threshold Function 449 m Back Propagation Can Be Understood
Heuristically 451 m Back-Propagation Follows from Gradient Descent and
the Chain Rule 453 m The Back-Propagation Procedure Is Straightfor-
ward 457

Back-Propagation Characteristics

Training May Require Thousands of Back Propagations 458 m ALVINN
Learns to Drive 459 @ Back Propagation Can Get Stuck or Become Un-
stable 461 m Back Propagation Can Be Done in Stages 462 m Back
Propagation Can Train a Net to Learn to Recognize Multiple Concepts Si-
multaneously 463 m Trained Neural Nets Can Make Predictions 464 m
Excess Weights Lead to Overfitting 465 m Neural-Net Training Is an Art 467

422

422

423

423

431

442

442

443

443

448

457

xiv

Contents

Summary

Background

CHAPTER 23 [
Learning by Training Perceptrons

Perceptrons and Perceptron Learning

Perceptrons Have Logic Boxes and Stair-Step Thresholds 471 m The Per-
ceptron Convergence Procedure Guarantees Success Whenever Success Is
Possible 474 m Ordinary Algebra Is Adequate to Demonstrate Conver-
gence When There Are Two Weights 477 m Vector Algebra Helps You to
Demonstrate Convergence When There Are Many Weights 480

What Perceptrons Can and Cannot Do

A Straight-Through Perceptron Can Learn to Identify Digits 482 m The
Perceptron Convergence Procedure Is Amazing 484 w There Are Simple
Tasks That Perceptrons Cannot Do 486

Summary

Background

CHAPTER 24]
Learning by Training Approximation Nets

Interpolation and Approximation Nets

Gaussian Functions Centered on Samples Enable Good Interpolations 492
m Given Sufficient Nodes, Nets Can Interpolate Perfectly 494 m Given
Relatively Few Nodes, Approximation Nets Can Yield Approximate Results
for All Sample Inputs 496 m Too Many Samples Leads to Weight Train-
ing 497 m Overlooked Dimensions May Explain Strange Data Better than
Elaborate Approximation 499 m The Interpolation-Approximation Point
of View Helps You to Answer Difficult Design Questions 501

Biological Implementation

Numbers Can Be Represented by Position 501 m Neurons Can Compute
Gaussian Functions 501 m Gaussian Functions Can Be Computed as Prod-
ucts of Gaussian Functions 502

Summary

Background

CHAPTER 25 m—————
Learning by Simulating Evolution

Survival of the Fittest
Chromosomes Determine Hereditary Traits 506 ®m The Fittest Survive 507

468
469

471
471

482

488
488

491
491

501

503
503

505
505

Genetic Algorithms

Genetic Algorithms involve Myriad Analogs 507 ® The Standard Method
Equates Fitness with Relative Quality 510 m Genetic Algorithms Generally
Involve Many Choices 512 m It Is Easy to Climb Bump Mountain With-
out Crossover 513 m Crossover Enables Genetic Algorithms to Search
High-Dimensional Spaces Efficiently 516 m Crossover Enables Genetic Al-
gorithms to Traverse Obstructing Moats 516 @ The Rank Method Links
Fitness to Quality Rank 518

Survival of the Most Diverse

The Rank-Space Method Links Fitness to Both Quality Rank and Diversity
Rank 520 m The Rank-Space Method Does Well on Moat Mountain 523
m Local Maxima Are Easier to Handle when Diversity Is Maintained 526

Summary

Background

PART lll —————————
Vision and Language

CHAPTER 26]
Recognizing Objects

Linear Image Combinations

Conventional Wisdom Has Focused on Multilevel Description 531 m Im-
ages Contain Implicit Shape Information 532 m One Approach Is Matching
Against Templates 533 m For One Special Case, Two Images Are Sufficient
to Generate a Third 536 m Identification Is a Matter of Finding Consistent
Coefficients 537 m The Template Approach Handles Arbitrary Rotation and
Translation 539 m The Template Approach Handles Objects with Parts 542
m The Template Approach Handles Complicated Curved Objects 545

Establishing Point Correspondence

Tracking Enables Model Points to Be Kept in Correspondence 547 ® Only
Sets of Points Need to Be Matched 547 m Heuristics Help You to Match
Unknown Points to Model Points 549

Summary

Background

CHAPTER 27 R
Describing Images

Computing Edge Distance

Averaged and Differenced Images Highlight Edges 553 m Multiple-Scale
Stereo Enables Distance Determination 557

Xv

507

519

527
528

529

531
531

546

550
550

553
553

xvi

Contents

Computing Surface Direction

Stereo Analysis Determines Elevations from Satellite Images 563 m Re-
flectance Maps Embody Illumination Constraints 564 m Making Synthetic
Images Requires a Reflectance Map 567 m Surface Shading Determines
Surface Direction 567

Summary

Background

CHAPTER 28 .|
Expressing Language Constraints

The Search for an Economical Theory

You Cannot Say That 576 m Phrases Crystallize on Words 576 & Re-
placement Examples Support Binary Representation 578 m Many Phrase
Types Have the Same Structure 579 m The X-Bar Hypothesis Says that All
Phrases Have the Same Structure 583

The Search for a Universal Theory

A Theory of Language Ought to Be a Theory of All Languages 586 m A
Theory of Language Ought to Account for Rapid Language Acquisition 588
& A Noun Phrase’s Case Is Determined by Its Governor 588 m Subjacency
Limits Wh- Movement 592

Competence versus Performance

Most Linguists Focus on Competence, Not on Performance 596 m Analy-
sis by Reversing Generation Can Be Silly 596 m Construction of a Language
Understanding Program Remains a Tough Row to Hoe 597 m Engineers
Must Take Shortcuts 597

Summary

Background

CHAPTER 29 |
Responding to Questions and Commands

Syntactic Transition Nets

Syntactic Transition Nets Are Like Roadmaps 600 m A Powerful Computer
Counted the Long Screwdrivers on the Big Table 601

Semantic Transition Trees

A Relational Database Makes a Good Target 604 m Pattern Instantiation
Is the Key to Relational-Database Retrieval in English 604 m Moving from
Syntactic Nets to Semantic Trees Simplifies Grammar Construction 605 m

562

572
573

575
575

585

594

598
598

599
599

603

Count the Long Screwdrivers 609 m Recursion Replaces Loops 612 m
Q&A Translates Questions into Database-Retrieval Commands 615

Summary

Background

APPEN D)X 0
Relational Databases

Relational Databases Consist of Tables Containing Records 617 m Rela-
tions Are Easy to Modify 617 m Records and Fields Are Easy to Extract 618
m Relations Are Easy to Combine 619

Summary

EXERCISES

Exercises for Chapter 1 627 m Exercises for Chapter 2 628 m Exercises
for Chapter 3 630 m Exercises for Chapter 4 633 m Exercises for Chapter
5 635 m Exercises for Chapter 6 635 m Exercises for Chapter 7 639 =
Exercises for Chapter 8 643 m Exercises for Chapter 9 647 m Exercises
for Chapter 10 649 ® Exercises for Chapter 11 650 m Exercises for
Chapter 12 652 m Exercises for Chapter 13 656 @ Exercises for Chapter
14 658 m Exercises for Chapter 15659 m Exercises for Chapter 16 663 m
Exercises for Chapter 17 667 m Exercises for Chapter 18 669 m Exercises
for Chapter 19 671 m Exercises for Chapter 20 674 m Exercises for
Chapter 21 675 m Exercises for Chapter 22 677 m Exercises for Chapter
23678 m Exercises for Chapter 24 679 m Exercises for Chapter 25 680 m
Exercises for Chapter 26 682 m Exercises for Chapter 27 684 m Exercises
for Chapter 28 689 m Exercises for Chapter 29 690

BIBLIOGRAPHY
INDEX

COLOPHON

614
614

617

626

627

693

725

737

Acknowledgments

The cover painting is by Karen A. Prendergast. The cover design is by
Dan Dawson. The interior design is by Marie McAdam.

A draft of this book was read by Boris Katz, who has a special gift for
rooting out problems and tenaciously insisting on improvements.

The following people also have made especially valuable suggestions:
Johnnie W. Baker (Kent State University), Robert C. Berwick (MIT), Ro-
nen Basri (MIT), Philippe Brou (Ascent Technology), David A. Chanen
(MIT), Paul A. Fishwick (University of Florida), Robert Frank (Univer-
sity of Pennsylvania), W. Eric L. Grimson (MIT), Jan L. Gunther (Ascent
Technology), James R. Harrington (Army Logistics Management College),
Seth Hutchinson (The Beckman Institute), Carl Manning (MIT), David
A. McAllester (MIT), Michael de la Maza (MIT), Thomas Marill (MIT),
Phillip E. Perkins (Army Logistics Management College), Lynn Peterson
(University of Texas at Arlington), Tomaso Poggio (MIT), Oberta A. Slot-
terbeck (Hiram College), and Xiru Zhang (Thinking Machines, Inc.).

Finally, the following people have been kind enough to identify er-
rors that appeared in previous printings: Gary Borchardt, Robert Gann,
Gary Gu, Jaap van den Herik, Wen-Bing Horng, Sven Iverson, George H.
John, Roger Johnson, Shie-Jue Lee, James Martin, Gerard Medioni, Ri-
cardo Fernandes Paixao Martin Ruckert, David Soussan, Larry Stephens,
Peter Szolovits, John Walker, and Ron Williams.

Xix

Software in support of this book is available via the INTERNET. To
learn how to obtain this software, send a message to ai3@ai.mit.edu with
the word “help” on the subject line. Your message will be answered by an
automatic reply program that will tell you what to do next.

The automatic reply program also tells you how to report a bug or
offer a suggestion via the INTERNET. If you wish to report a bug or offer a
suggestion via ordinary mail, write to the author at the following address:

Patrick H. Winston

Room 816

Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139

You Need to Know About Artificial Intelligence

This book was written for two groups of people. One group—computer
scientists and engineers—need to know about artificial intelligence to make
computers more useful. Another group—psychologists, biologists, linguists,
and philosophers—need to know about artificial intelligence to understand
the principles that make intelligence possible.

You do not need a computer-science education or advanced mathemat-
ical training to understand the basic ideas. Ideas from those disciplines
are discussed, in a spirit of scientific glasnost, but those discussions are in
optional sections, plainly marked and easily detoured around.

This Edition Reflects Changes in the Field

This edition of Artificial Intelligence reflects, in part, the steady progress
made since the second edition was published. Some ideas that seemed good
back then have faded, and have been displaced by newer, better ideas.
There have been more remarkable, more revolutionary changes as well.
One of these is the change brought about by the incredible progress that
has been made in computer hardware. Many simple ideas that seemed silly
10 years ago, on the ground that they would require unthinkable computa-
tions, now seem to be valid, because fast—often parallel—computing has
become commonplace. As described in Chapter 19, for example, one good
way to control a rapidly moving robot arm is to use a vast lookup table.

xxiii

XXiv

Preface

Another remarkable change, perhaps the most conspicuous, is the focus
on learning—particularly the kind of learning that is done by neuronlike
nets. Ten years ago, only a handful of people in artificial intelligence studied
learning of any kind; now, most people seem to have incorporated a learning
component into their work. Accordingly, about one-third of the chapters
in this edition are devoted to various approaches to learning, and about
one-third of those deal with neuronlike nets.

Still another remarkable change is the emergence of breakthroughs. As
described in Chapter 26, for example, one good way to identify a three-
dimensional object is to construct two-dimensional templates for the given
object, in the given view, for each possible object class. Ten years ago, no
one suspected that the required templates could be manufactured perfectly,
simply, and on demand, no matter how the object is viewed.

Finally, there is the emphasis on scaling up. These days, it is hard to
attract attention with an idea that appears suited to toy problems only.
This difficulty creates a dilemma for a textbook writers, because textbooks
need to discuss toy problems so that the complexities of particular real
worlds do not get in the way of understanding the basic ideas. To deal
with this dilemma, I discuss many examples of important applications, but
only after I explain the basic ideas in simpler contexts.

This Edition Responds to Suggestions of Previous Users

Many readers of the first and second editions have offered wonderful sug-
gestions. At one meeting in Seattle, on a now-forgotten subject, Peter
Andreae and J. Michael Brady remarked, over coffee, that it was hard for
students to visualize how the ideas could be incorporated into programs.

Similarly, feedback from my own students at the Massachusetts Insti-
tute of Technology indicated a need to separate the truly powerful ideas
and unifying themes—such as the principle of least commitment and the
importance of representation—from nugatory implementation details.

In response to such suggestions, this edition is peppered with several
kinds of summarizing material, all set off visually:

B Semiformal procedure specifications

® Semiformal representation specifications
m Hierarchical specification trees

m Powerful ideas

You Can Decide How Much You Want to Read

"To encourage my students to get to the point, I tell them that I will not read
more than 100 pages of any dissertation. Looking at this book, it might
seem that I have neglected my own dictum, because this book has grown
to be many times 100 pages long. My honor is preserved, nevertheless,
because several features make this edition easier to read:

This Edition Is Supported by an Instructor’s Manual XXV

m There are few essential chapter-to-chapter dependencies. Individual
readers with bounded interests or time can get what they need from
one or two chapters.

m The book is modular. Instructors can design their own subject around
200 or 300 pages of material.

m Each chapter is shorter, relative to the chapters in the second edition.
Many can be covered by instructors in one or two lectures.

If you want to develop a general understanding of artificial intelligence,
you should read Chapters 2 through 12 from Part I; then you should skim
Chapter 16 and Chapter 19 from Part II, and Chapter 26 from Part III
to get a feel for what is in the rest of the book. If you are interested
primarily in learning, you should read Chapter 2 from Part I to learn about
representations; then, you should read all of Part II. If you are interested
primarily in vision or in language, you can limit yourself to the appropriate
chapters in Part III.

This Edition Is Supported by Optional Software

This book discusses ideas on many levels, from the level of issues and
alternatives to a level that lies just one step short of implementation in
computer programs. For those readers who wish to take that one extra
step, to see how the ideas can be reduced to computer programs, there are
two alternatives:

® For people who already know the LiSP programming language, a large
and growing number of programs written in support of this book are
available via the INTERNET; see the software note that precedes this
preface.

m For people who do not know the LisP programming language, the com-
panion book LISP, by Patrick H. Winston and Berthold K. P. Horn,
is a good introduction that treats many of the ideas explained in this
book from the programming perspective.

This Edition Is Supported by an Instructor's Manual

A companion Instructors Manual contains exercise solutions and sample
syllabuses.
PHW.

Part |
Representations
and Methods

In part I, you learn about basic representations and methods. These
representations and methods are used by engineers to build commercial
systems and by scientists to explain various kinds of intelligence.

In Chapter 1, The Intelligent Computer, you learn about what
artificial intelligence is, why artificial intelligence is important, and how
artificial intelligence is applied. You also learn about criteria for judging
success.

In Chapter 2, Semantic Nets and Description Matching, you
learn about the importance of good representation and you learn how to
test a representation to see whether it is a good one. Along the way, you
learn about semantic nets and about the describe-and-match method. By
way of illustration, you learn about a geometric-analogy problem solver, a
plot recognizer, and a feature-based object identifier.

In Chapter 3, Generate and Test, Means-Ends Analysis, and
Problem Reduction, you learn about three powerful problem-solving
methods: generate and test, means—ends analysis, and problem reduction.
Examples illustrating these problem-solving methods at work underscore
the importance of devising a good representation, such as a state space or
a goal tree.

In Chapter 4, Nets and Basic Search, you learn about basic search
methods, such as depth-first search, that are used in all sorts of programs,
ranging from those that do robot path planning to those that provide
natural-language access to database information.

In Chapter 5, Nets and Optimal Search, you learn more about
search methods, but now the focus is on finding the best path to a goal,
rather than just any path. The methods explained include branch and
bound, discrete dynamic programming, and A*.

In Chapter 6, Trees and Adversarial Search, you learn still more
about search methods, but here the focus shifts again, this time to games.
You learn how minimaz search tells you where to move and how alpha—
beta pruning makes minimax search faster. You also learn how heuristic
continuation and progressive deepening enable you to use all the time you
have effectively, even though game situations vary dramatically.

In Chapter 7, Rules and Rule Chaining, you learn that simple if-
then rules can embody a great deal of commercially useful knowledge. You
also learn about using if-then rules in programs that do forward chaining
and backward chaining. By way of illustration, you learn about toy systems
that identify zoo animals and bag groceries. You also learn about certain
key implementation details, such as variable binding via tree search and the
rete procedure.

In Chapter 8, Rules, Substrates, and Cognitive Modeling, you
learn how it is possible to build important capabilities on top of rule-based
problem-solving apparatus. In particular, you learn how it is possible for
a program to explain the steps that have led to a conclusion, to reason
in a variety of styles, to reason under time constraints, to determine a
conclusion’s probability, and to check the consistency of a newly proposed
rule. You also learn about knowledge engineering and about SOAR, a rule-
based model of human problem solving.

In Chapter 9, Frames and Inheritance, you learn about frames,
classes, instances, slots, and slot values. You also learn about inheritance,
a powerful problem-solving method that makes it possible to know a great
deal about instances by virtue of knowing about the classes to which the
instances belong. You also learn how knowledge can be captured in certain
procedures, often called demons, that are attached to classes.

In Chapter 10, Frames and Commonsense, you learn how frames
can capture knowledge about how actions happen. In particular, you learn
how thematic-role frames describe the action conveyed by verbs and nouns,
and you learn about how action frames and state-change frames describe
how actions happen on a deeper, syntax-independent level.

In Chapter 11, Numeric Constraints and Propagation, you learn
how good representations often bring out constraints that enable conclu-
sions to propagate like the waves produced by a stone dropped in a quiet
pond. In particular, you see how to use numeric constraint propagation
to propagate probability estimates through opinion nets and to propagate
altitude measurements through smoothness constraints.

In Chapter 12, Symbolic Constraints and Propagation, you learn
more about constraint propagation, but now the emphasis is on symbolic

constraint propagation. You see how symbolic constraint propagation solves
problems in line-drawing analysis and relative time calculation. You also
learn about Marr’s methodological principles.

In Chapter 13, Logic and Resolution Proof, you learn about logic,
an important addition to your knowledge of problem-solving paradigms.
After digesting a mountain of notation, you explore the notion of proof, and
you learn how to use proof by refutation and resolution theorem proving.

In Chapter 14, Backtracking and Truth Maintenance, you learn
how logic serves as a foundation for other problem-solving methods. In
particular, you learn about proof by constraint propagation and about truth
maintenance. By way of preparation, you also learn what dependency-
directed backtracking is, and how it differs from chronological backtracking,
in the context of numeric constraint propagation.

In Chapter 15, Planning, you learn about two distinct approaches to
planning a sequence of actions to achieve some goal. One way, the STRIPS
approach, uses if-add-delete operators to work on a single collection of
assertions. Another way, the theorem-proving approach, rooted in logic,
uses situation variables and frame azioms to tie together collections of
expressions, producing a movielike sequence.

The
Intelligent
Computer

This book is about the field that has come to be called artificial in-
telligence. In this chapter, you learn how to define artificial intelligence,
and you learn how the book is arranged. You get a feeling for why arti-
ficial intelligence is important, both as a branch of engineering and as a
kind of science. You learn about some successful applications of artificial
intelligence. And finally, you learn about criteria you can use to determine
whether work in Artificial Intelligence is successful.

THE FIELD AND THE BOOK

There are many ways to define the field of Artificial Intelligence. Here is
one:

Artificial intelligence is ...

> The study of the computations that make it possible to
perceive, reason, and act.

From the perspective of this definition, artificial intelligence differs from
most of psychology because of the greater emphasis on computation, and
artificial intelligence differs from most of computer science because of
the emphasis on perception, reasoning, and action.

6

Chapter

1

The Intelligent Computer

From the perspective of goals, artificial intelligence can be viewed as
part engineering, part science:

@ The engineering goal of artificial intelligence is to solve real-world
problems using artificial intelligence as an armamentarium of ideas
about representing knowledge, using knowledge, and assembling sys-
tems.

B The scientific goal of artificial intelligence is to determine which ideas
about representing knowledge, using knowledge, and assembling sys-
tems explain various sorts of intelligence.

This Book Has Three Parts

To make use of artificial intelligence, you need a basic understanding of
how knowledge can be represented and what methods can make use of
that knowledge. Accordingly, in Part I of this book, you learn about basic
representations and methods. You also learn, by way of vision and language
examples, that the basic representations and methods have a long reach.

Next, because many people consider learning to be the sine qua non of
intelligence, you learn, in Part II, about a rich variety of learning methods.
Some of these methods involve a great deal of reasoning; others just dig
regularity out of data, without any analysis of why the regularity is there.

Finally, in Part III, you focus directly on visual perception and lan-
guage understanding, learning not only about perception and language per
se, but also about ideas that have been a major source of inspiration for
people working in other subfields of artificial intelligence.!

The Long-Term Applications Stagger the Imagination

As the world grows more complex, we must use our material and human
resources more efficiently, and to do that, we need high-quality help from
computers. Here are a few possibilities:

® In farming, computer-controlled robots should control pests, prune
trees, and selectively harvest mixed crops.

8 In manufacturing, computer-controlled robots should do the dangerous
and boring assembly, inspection, and maintenance jobs.

@ In medical care, computers should help practitioners with diagnosis,
monitor patients’ conditions, manage treatment, and make beds.

® In household work, computers should give advice on cooking and shop-
ping, clean the floors, mow the lawn, do the laundry, and perform
maintenance chores.

TSometimes, you hear the phrase core AI used by people who regard language,
vision, and robotics to be somehow separable from the mainstream of artificial
intelligence. However, in light of the way progress on language, vision, and
robotics can and has influenced work on reasoning, any such separation seems

misadvised.

Artificial Intelligence Sheds New Light on Traditional Questions 7

m In schools, computers should understand why their students make mis-
takes, not just react to errors. Computers should act as superbooks,
displaying planetary orbits and playing musical scores, thus helping
students to understand physics and music.

The Near-Term Applications Involve New Opportunities

Many people are under the false impression that the commercial goal of
artificial intelligence must be to save money by replacing human workers.
But in the commercial world, most people are more enthusiastic about new
opportunities than about decreased cost. Moreover, the task of totally
replacing a human worker ranges from difficult to impossible because we
do not know how to endow computers with all the perception, reasoning,
and action abilities that people exhibit.

Nevertheless, because intelligent people and intelligent computers have
complementary abilities, people and computers can realize opportunities
together that neither can realize alone. Here are some examples:

® In business, computers can help us to locate pertinent information, to
schedule work, to allocate resources, and to discover salient regularities
in databases.

® In engineering, computers can help us to develop more effective control
strategies, to create better designs, to explain past decisions, and to
identify future risks.

Artificial Intelligence Sheds New Light on
Traditional Questions

Artificial intelligence complements the traditional perspectives of psychol-
ogy, linguistics, and philosophy. Here are several reasons why:

m Computer metaphors aid thinking. Work with computers has led to a
rich new language for talking about how to do things and how to de-
scribe things. Metaphorical and analogical use of the concepts involved
enables more powerful thinking about thinking.

m Computer models force precision. Implementing a theory uncovers con-
ceptual mistakes and oversights that ordinarily escape even the most
meticulous researchers. Major roadblocks often appear that were not
recognized as problems at all before the cycle of thinking and experi-
menting began.

m Computer implementations quantify task requirements. Once a pro-
gram performs a task, upper-bound statements can be made about how
much information processing the task requires.

m Computer programs exhibit unlimited patience, require no feeding, and
do not bite. Moreover, it is usually simple to deprive a computer
program of some piece of knowledge to test how important that piece
really is. It is almost always impossible to work with animal brains
with the same precision.

Chapter

1 The Intelligent Computer

Note that wanting to make computers be intelligent is not the same as
wanting to make computers simulate intelligence. Artificial intelligence
excites people who want to uncover principles that must be exploited by all
intelligent information processors, not just by those made of neural tissue
instead of electronic circuits. Consequently, there is neither an obsession
with mimicking human intelligence nor a prejudice against using methods
that seem involved in human intelligence. Instead, there is a new point of
view that brings along a new methodology and leads to new theories.

Artificial Intelligence Helps Us to Become More Intelligent

Just as psychological knowledge about human information processing can
help to make computers intelligent, theories derived primarily with com-
puters in mind often suggest useful guidance for human thinking. Through
artificial intelligence research, many representations and methods that peo-
ple seem to use unconsciously have been crystallized and made easier for
people to deploy deliberately.

WHAT ARTIFICIAL INTELLIGENCE CAN DO

In this section, you learn about representative systems that were enabled by
ideas drawn from artificial intelligence. Once you have finished this book,
you will be well on your way toward incorporating the ideas of artificial
intelligence into your own systems.

Intelligent Systems Can Help Experts to Solve
Difficult Analysis Problems

During the early days of research in artificial intelligence, James R. Sla-
gle showed that computers can work problems in integral calculus at the
level of college freshmen. Today, programs can perform certain kinds of
mathematical analysis at a much more sophisticated level.

The KAM program, for example, is an expert in nonlinear dynamics, a
subject of great interest to scientists who study the equations that govern
complex object interactions.

To demonstrate KAM’s competence, Kenneth M. Yip, KaM’s devel-
oper, asked KAM to reason about the implications of the following differ-
ence equations, which were developed by Michel Henon, a noted French
astronomer, to study star motion:

Tny1 =T cosa — (Yo — T2)sina,

Ynt1 =Tpsina — (yn — T2) cOS Q.
First, KAM performed a series of simulations, tracing the progression of z
and y from 10 sets of initial values selected by Kam. Figure 1.1 shows the
resulting pattern of z—y values.

Then, using methods developed in computer-vision research, as well as
its deep mathematical knowledge, KAM produced the following conclusions,
which are presented here to give you a sense of KAM’s sophistication:

Intelligent Systems Can Help Experts to Design New Devices

Figure 1.1 Yip's program
performs its own experiments,
which it then analyzes using
computer-vision methods and
deep mathematical knowledge.
Here you see a plot produced
by Yip’'s program in the course
of analyzing certain equations
studied by astronomers.
Images courtesy of Kenneth
M. Yip.

1.0

0.5

I -05

197% -0.5 0.0 0.5 1.0

An Analysis
There is an elliptic fixed point at (0 0 0). Surrounding the fixed
point is a regular region bounded by a KAM curve with a rotation
number between 1/5 and 1/4. Outside the regular region lies a
chain of 5 islands. The island chain is bounded by a KAM curve
with rotation number between 4/21 and 5/26. The outermost re-
gion is occupied by chaotic orbits which eventually escape.

KAM’s analysis is impressively similar to the original analysis of Henon.

Intelligent Systems Can Help Experts to Design New Devices

The utility of intelligence programs in science and engineering is not limited
to sophisticated analysis; many recent programs have begun to work on the
synthesis side as well.

For example, a program developed by Karl Ulrich designs simple de-
vices and then looks for cost-cutting opportunities to reduce the number of
components. In one experiment, Ulrich’s program designed a device that
measures an airplane’s rate of descent by measuring the rate at which air
pressure is increasing.

The first step performed by Ulrich’s program was to search for a col-
lection of components that does the specified task. Figure 1.2(a) shows
the result. Essentially, a rapid increase in air pressure moves the piston
to the right, compressing the air in back of the piston and driving it into
a reservoir; once the increase in air pressure stops, the air in back of the
piston and in the reservoir bleeds back through the return pipe, and the

10 Chapter 1 The Intelligent Computer

Air
entry

Return pipe

Reservoir

|
1

Return pipe

(@)

Reservoir

(©)

Figure 1.2 Uirich’s
program designs a
rate-of-descent device
in two steps. First,

as shown in (a), the
program discovers a
workable collection of
components. Then,
as shown in (b), the
program simplifies the
device by reducing the
number of components

required.
L]

rate indicator returns to the zero position. Thus, in more sophisticated
language, Ulrich’s program designed a device to differentiate air pressure.

The second step performed by Ulrich’s program was to look for ways
for components to assume multiple functions, thus reducing the number
of components required. Figure 1.2(b) shows the result. The program
eliminated the return pipe by increasing the size of the small gap that
always separates a piston from its enclosing cylinder. Then, the program
eliminated the air reservoir by increasing the length of the cylinder, thus
enabling the cylinder to assume the reservoir function.

Intelligent Systems Can Learn from Examples

Most learning programs are either experience oriented or data oriented.
The goal of work on experience-oriented learning is to discover how pro-
grams can learn the way people usually do—by reasoning about new expe-
riences in the light of commonsense knowledge.

The goal of work on data-oriented learning programs is to develop prac-
tical programs that can mine databases for exploitable regularities. Among
these data-oriented learning programs, the most well-known is the ID3 sys-
tem developed by J. Ross Quinlan. ID3 and its descendants have mined
thousands of databases, producing identification rules in areas ranging from
credit assessment to disease diagnosis.

One typical exercise of the technology, undertaken by Quinlan him-
self, was directed at a database containing information on patients with
hypothyroid disease. This information, provided by the Garvan Institute
of Medical Research in Sydney, described each of several thousand cases of
thyroid disease in terms of 7 continuous variables (such as the measured

1

level of thyroid-stimulating hormone, TSH), and 16 discrete variables, (such
as whether or not the patient had already had thyroid surgery).

From this sea of data, Quinlan’s program extracted three straightfor-
ward rules for classification of hypothyroid disease:

If the patient’s TSH level is less than 6.05 units
then the patient’s class is negative

If the patient has not had thyroid surgery
the patient’s TSH level is greater than 6.05 units
the patient’s FTI level is less than 64.5 units
then the patient’s class is primary hypothyroid

If the patient is not taking thyroxine
the patient has not had thyroid surgery
the patient’s TSH level is greater than 6.05 units
the patient’s FTI level is greater than 64.5 units
the patient’s TT4 level is less than 150.5 units
then the patient’s class is compensated hypothyroid

Evidently, of the seven continuous and 16 discrete variables available, only
five are useful in disease classification.

Intelligent Systems Can Provide Answers to
English Questions Using both Structured Data
and Free Text

As the Voyager 2 spacecraft concluded its 12-year grand tour of the outer
planets, it sent back spectacular images of Neptune’s moons and rings,
much to the delight of journalists and scientists gathered to witness the
event. In cooperation with researchers from the Jet Propulsion Laboratory,
Boris Katz invited those journalists and scientists to use his START system
to ask questions about the Neptune encounter, the Voyager spacecraft, and
the Solar system.

To answer straightforward questions, START accessed a variety of ta-
bles, including a distance table supplied by the Voyager navigation team
and a time-line table supplied by the Voyager sequencing group. Here are
a few representative examples:
® When was Voyager launched?

The Voyager Spacecraft was launched in Florida on August 20 1977.
® At what time will Voyager lose contact with Earth?

The Voyager Spacecraft will lose the contact with Earth around 2014.
B How long is the year on Neptune?

Neptune’s period of revolution is about 165 Earth years.

START also answered questions by printing out English text drawn from
various space publications, as illustrated by the following representative

12

Chapter

1 The Intelligent Computer

questions and answers. Note that the critical words in the questions—
color, talk, and weather—do not appear in the answers:

B What color is Neptune?
When you look at a photograph of Neptune, you see the planet’s at-
mosphere and the tops of clouds. Neptune looks bluish because the
methane in its atmosphere reflects blue and green frequencies of light.
The methane absorbs red and yellow frequencies of sunlight.

@ How does Voyager talk to Earth?
Commands are sent from Earth to one of two receivers on the Voy-
ager spacecraft. Engineering data and scientific information are sent
to Earth over two channels. One channel is on all the time, but both
channels are on during encounters with the planets. The radio trans-
mitter on the Voyager transmits with about 25 watts of power, or with
about the same power as a refrigerator lightbulb. These faint signals
are picked up on Earth by ultrasensitive receivers known as the Deep
Space Network.

® What’s the weather on Neptune?
Neptune receives about a thousand times less sunlight than the Earth.
The temperatures there are thus quite low. Typically, the temperature
is about —360 degrees Fahrenheit (—218 degrees Celsius).

Artificial Intelligence Is Becoming Less
Conspicuous, yet More Essential

The first applications of artificial intelligence were mostly motivated by the
desire of researchers to demonstrate that artificial intelligence is of practical
value. Now, as the field is maturing, the development of applications is
motivated increasingly by the desire of business people to achieve strategic
business goals.

One example of a business-motivated application is the Airport Re-
source Information System-—ARIs—developed by Ascent Technology, Inc.,
and used by Delta Airlines to help allocate airport gates to arriving flights.

The gate-allocation problem, illustrated in figure 1.3, is difficult at a
busy airport, because ARIS must react immediately to arrival and departure
changes, such as those imposed by bad weather, and because there are many
constraints to consider. One obvious constraint is that you cannot park a
large aircraft at a gate designed to handle only small aircraft. Another is
that passengers want their connecting flights to be parked at gates that
are within easy walking distance. Still another, less obvious constraint is
that gate controllers want to avoid potential traffic jams as aircraft move to
and from their assigned gates. ARIS handles all these constraints and many
more using artificial intelligence methods that include rule-based reasoning,
constraint propagation, and spatial planning.

Handling the constraints was not the principal challenge faced by ARIS’s
developers, however. Other difficult challenges were posed by the need to

Criteria for Success 13

Figure 1.3 ARIS helps

determine how to manage gate

resources at busy airport hubs. ¥4+ ¥¥ ¥4 I I¥ 394

]
A2 A4 A6 AB A10 A12 A14 A16A18 A20 A22 A24 A26 A28 R30A32 A34
AL A3 A5 A7 A9 A1l A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 A33

A AdAt A b bk A b4

HEeFidtd o+ ¥

BP BY B8 B7 BACQVHY SN S EE IR B o i B B8

14 t 444 244 12

provide human decision makers with a transparent view of current oper-
ations, the need to exchange information with mainframe databases, the
need to provide rapid, automatic recovery from hardware failures, and the
need to distribute all sorts of information to personnel responsible for bag-
gage, catering, passenger service, crew scheduling, and aircraft mainte-
nance. Such challenges require considerable skill in the art of harnessing
artificial intelligence ideas with those of other established and emerging

technologies.

CRITERIA FOR SUCCESS

Every field needs criteria for success. To determine if research work in
artificial intelligence is successful, you should ask three key questions:

m s the task defined clearly?

® Is there an implemented procedure performing the defined task? If not,
much difficulty may be lying under a rug somewhere.

m s there a set of identifiable regularities or constraints from which the
implemented procedure gets its power? If not, the procedure may be
an ad hoc toy, capable perhaps of superficially impressive performance
on carefully selected examples, but incapable of deeply impressive per-
formance and incapable of helping you to solve any other problem.

tEsther Dyson, noted industry analyst, has said that some of the most successful

applications of artificial intelligence are those in which the artificial intelligence
is spread like raisins in a loaf of raisin bread: the raisins do not occupy much
space, but they often provide the principal source of nutrition.

14

Chapter

1 The Intelligent Computer

To determine if an application of artificial intelligence is successful, you
need to ask additional questions, such as the following:

B Does the application solve a real problem?
® Does the application open up a new opportunity?

Throughout this book, you see examples of research and applications-
oriented work that satisfy these criteria: all perform clearly defined tasks;
all involve implemented procedures; all involve identified regularities or
constraints; and some solve real problems or open up new opportunities.

SUMMARY

8 Artificial intelligence is the study of the computations that make it
possible to perceive, reason, and act.

B The engineering goal of artificial intelligence is to solve real-world prob-
lems; the scientific goal of Artificial Intelligence is to explain various
sorts of intelligence.

® Applications of artificial intelligence should be judged according to
whether there is a well-defined task, an implemented program, and a
set of identifiable principles.

B Artificial intelligence can help us to solve difficult, real-world problems,
creating new opportunities in business, engineering, and many other
application areas.

® Artificial intelligence sheds new light on questions traditionally asked
by psychologists, linguists, and philosophers. A few rays of this new
light can help us to be more intelligent.

BACKGROUND

Artificial intelligence has a programming heritage. To understand the ideas
introduced in this book in depth, you need to see a few of them embodied
in program form. A coordinated book, LISP, Third Edition [1989], by
Patrick H. Winston and Berthold K. P. Horn, satisfies this need.

ID3 was developed by J. Ross Quinlan [1979, 1983].

KAM is the work of Kenneth M. Yip [1989]. The work on designing a
rate-of-descent instrument is that of Karl T. Ulrich [1988].

The work on responding to English questions using both structured
data and free text is that of Boris Katz [1990).

Semantic Nets and
Description Matching

In this chapter, you learn about the role of representation in artificial
intelligence, and you learn about semantic nets, one of the most ubiquitous
representations used in artificial intelligence. You also learn about describe
and match, an important problem-solving method.

By way of illustration, you see how one describe-and-match program,
working on semantic-net descriptions, can solve geometric analogy prob-
lems of the sort found on intelligence tests. You also see how another
describe-and-match program, again working on semantic-net descriptions,
can recognize instances of abstractions, such as “mixed blessing” and “re-
taliation,” in semantic nets that capture story plots. The piece de résistance
involves the analysis of O. Henry’s intricate short story, “The Gift of the
Magi.” Both the analogy program and the abstraction program show that
simple descriptions, conforming to appropriate representations, can lead to
easy problem solving.

Also, you see that the describe-and-match method is effective with
other representations, not just with semantic nets. In particular, you see
how the describe-and-match method lies underneath the feature-based ap-
proach to object identification.

Once you have finished this chapter, you will know how to evaluate
representations and you will know what representation-oriented questions
you should always ask when you are learning how to deal with an unfamiliar
class of problems. You will have started your own personal collection of
representations and problem-solving methods by learning about semantic

15

16

Chapter

2 Semantic Nets and Description Matching

nets, feature spaces, and the describe-and-match method. Finally, you will
have started your own personal collection of case studies that will serve as
useful precedents when you are confronted with new problems.

SEMANTIC NETS

In this section, you learn about what a representation is, a sense in which
most representations are equivalent, and criteria by which representations
can be judged. You also learn about semantic nets, a representation that
sees both direct and indirect service throughout artificial intelligence.

Good Representations Are the Key to Good Problem Solving

In general, a representation is a set of conventions about how to de-
scribe a class of things. A description makes use of the conventions of a
representation to describe some particular thing.

Finding the appropriate representation is a major part of problem solv-
ing. Consider, for example, the following children’s puzzle:

The Farmer, Fox, Goose, and Grain
A farmer wants to move himself, a silver fox, a fat goose, and some
tasty grain across a river. Unfortunately, his boat is so tiny he can
take only one of his possessions across on any trip. Worse yet, an
unattended fox will eat a goose, and an unattended goose will eat
grain, so the farmer must not leave the fox alone with the goose or
the goose alone with the grain. What is he to do?

Described in English, the problem takes a few minutes to solve because you
have to separate important constraints from irrelevant details. English is
not a good representation.

Described more appropriately, however, the problem takes no time at
all, for everyone can draw a line from the start to the finish in figure 2.1
instantly. Yet drawing that line solves the problem because each boxed
picture denotes a safe arrangement of the farmer and his possessions on the
banks of the river, and each connection between pictures denotes a legal
crossing. The drawing is a good description because the allowed situations
and legal crossings are clearly defined and there are no irrelevant details.

To make such a diagram, you first construct a node for each way the
farmer and his three possessions can populate the two banks of the river.
Because the farmer and his three possessions each can be on either of the
two river banks, there are 2173 = 16 arrangements, 10 of which are safe
in the sense that nothing is eaten. The six unsafe arrangements place an
animal and something the animal likes to eat on one side, with the farmer
on the other.

Good Representations Are the Key to Good Problem Solving

17

Farmer
Goose
Grain > Grain
== T T
Farmer |g Fox
Fox
Goose
Farmer
Fox Farmer
Goose Fox Fox BN Farmer
~Grain__ | ”| _Grain Grain__ ~Goose |7 _Goose | 7|~
—_— —— = e —= —=
€« Famer |¢| Goose Farmer Fox < Farmer
Goose Fox Grain Fox
Grain Goose
Grain
Farmer
Fox
Fox > Goose
— Y
—_—— —_—=
Farmer |g | Grain
Goose
Grain

Figure 2.1 The
problem of the farmer,
fox, goose, and grain.
The farmer must get
his fox, goose, and
grain across the river,
from the arrangement
on the left to the
arrangement on the
right. His boat will hold
only him and one of

his three possessions.
T

using a bad representation, is a brick wall preventing problem solving.

The second and final step is to draw a link for each allowable boat
trip. For each ordered pair of arrangements, there is a connecting link if
and only if the two arrangements meet two conditions: first, the farmer
changes sides; and second, at most one of the farmer’s possessions changes
sides. Because there are 10 safe arrangements, there are 10 x9 = 90 ordered
pairs, but only 20 of these pairs satisfy the conditions required for links.

Evidently, the node-and-link description is a good description with
respect to the problem posed, for it is easy to make, and, once you have it,
the problem is simple to solve.
The important idea illustrated by the farmer, fox, goose, and grain
problem is that a good description, developed within the conventions of a
good representation, is an open door to problem solving; a bad description,

18

Chapter 2 Semantic Nets and Description Matching

In this book, the most important ideas—such as the idea that a good
representation is important—are called powerful ideas; they are high-
lighted thus:

The representation principle:

> Once a problem is described using an appropriate repre-
sentation, the problem is almost solved.

In the rest of this book, you learn about one or two powerful ideas per
chapter.

Good Representations Support Explicit,
Constraint-Exposing Description

One reason that the node-and-link representation works well with the
farmer, fox, goose, and grain problem is that it makes the important objects
and relations explicit. There is no bothering with the color of the fox or
the size of the goose or the quality of the grain; instead, there is an ex-
plicit statement about safe arrangements and possible transitions between
arrangements.

The representation also is good because it exposes the natural con-
straints inherent in the problem. Some transitions are possible; others are
impossible. The representation makes it easy to decide which is true for
any particular case: a transition is possible if there is a link; otherwise, it
is impossible.

You should always look for such desiderata when you evaluate repre-
sentations. Here is a list with which you can start, beginning with the two
ideas just introduced:

Good representations make the important objects and relations ex-
plicit: You can see what is going on at a glance.

m They expose natural constraints: You can express the way one object
or relation influences another.

® They bring objects and relations together: You can see all you need to

see at one time, as if through a straw.

They suppress irrelevant detail: You can keep rarely used details out

of sight, but still get to them when necessary.

They are transparent: You can understand what is being said.

They are complete: You can say all that needs to be said.

They are concise: You can say what you need to say efliciently.

They are fast: You can store and retrieve information rapidly.

They are computable: You can create them with an existing procedure.

Semantic Nets Convey Meaning 19

A Representation Has Four Fundamental Parts

With the farmer, fox, goose, and grain problem as a point of reference, you
can now appreciate a more specific definition of what a representation is.
A representation consists of the following four fundamental parts:

m A lexical part that determines which symbols are allowed in the rep-
resentation’s vocabulary

® A structural part that describes constraints on how the symbols can
be arranged

B A procedural part that specifies access procedures that enable you
to create descriptions, to modify them, and to answer questions using
them

®m A semantic part that establishes a way of associating meaning with
the descriptions

In the representation used to solve the farmer, fox, goose, and grain prob-
lem, the lexical part of the representation determines that nodes and links
are involved. The structural part specifies that links connect node pairs.
The semantic part establishes that nodes correspond to arrangements
of the farmer and his possessions and links correspond to river traver-
sals. And, as long as you are to solve the problem using a drawing, the
procedural part is left vague because the access procedures are some-
where in your brain, which provides constructors that guide your pencil
and readers that interpret what you see.

Semantic Nets Convey Meaning

The representation involved in the farmer problem is an example of a
semantic net.

From the lexical perspective, semantic nets consist of nodes, denoting
objects, links, denoting relations between objects, and link labels that
denote particular relations.

From the structural perspective, nodes are connected to each other
by labeled links. In diagrams, nodes often appear as circles, ellipses, or
rectangles, and links appear as arrows pointing from one node, the tail
node, to another node, the head node.

From the semantic perspective, the meaning of nodes and links depends
on the application.

From the procedural perspective, access procedures are, in general, any
one of constructor procedures, reader procedures, writer proce-
dures, or possibly erasure procedures. Semantic nets use constructors
to make nodes and links, readers to answer questions about nodes and
links, writers to alter nodes and links, and, occasionally, erasers to delete
nodes and links.

By way of summary, the following specifies what it means to be a
semantic net in lexical, structural, semantic, and procedural terms, using

20

Chapter

2 Semantic Nets and Description Matching

an informal specification format that appears throughout the rest of this
book:

A semantic net is a representation
In which

> Lexically, there are nodes, links, and application-specific
link labels.

> Structurally, each link connects a tail node to a head node.

> Semantically, the nodes and links denote application-specific
entities.

With constructors that
> Construct a node

> Construct a link, given a link label and two nodes to be
connected

With readers that

> Produce a list of all links departing from a given node
> Produce a list of all links arriving at a given node

> Produce a tail node, given a link

> Produce a head node, given a link

> Produce a link label, given a link

Such specifications are meant to be a little more precise and consistent
than ordinary English phrases, but not stuffily so. In particular, they are
not so precise as to constitute a specification of the sort you would find in
an official standard for, say, a programming language.

Nevertheless, the specifications are sufficiently precise to show that
many of the key representations in artificial intelligence form family groups.
Figure 2.2, for example, shows part of the family of representations for
which the semantic-net representation is the ultimate ancestor. Although
this semantic-net family is large and is used ubiquitously, you should note
that it is but one of many that have been borrowed, invented, or reinvented
in the service of artificial intelligence.

There Are Many Schools of Thought About the
Meaning of Semantics

Arguments about what it means to have a semantics have employed philoso-
phers for millennia. The following are among the alternatives advanced by
one school or another:

® Equivalence semantics. Let there be some way of relating descrip-

tions in the representation to descriptions in some other representation
that already has an accepted semantics.

There Are Many Schools of Thought About the Meaning of Semantics 21

Figure 2.2 Part of the
semantic-net family of

representations. Although many E\
programs explained in this book
use one of the family members P\ A
shown, others use important Identification

Labelled:drawing Intg'rval net

representations that lie outside ~tree))
of the famil Arithmetic
y.— / Contraction net constraint

o n
Decision Game 5 ot

\ tre tree
Search Goal

tree /tree Value propagation net

Frame system State_“pace

B Procedural semantics. Let there be a set of programs that operate
on descriptions in the representation. Say that meaning is defined by
what the programs do.

m Descriptive semantics. Let there be explanations of what descrip-
tions mean in terms we understand intuitively.

From the perspective of descriptive semantics, the net on the left side of
figure 2.3 is not a semantic net, because there is neither a prima facie
description in terms you understand nor an explanation of what the link
labels mean in terms you understand. The net on the right side of figure 2.3,
however, is a semantic net, because you naturally tend to ascribe meaning
to the links. Asked what the net means, most people would say immediately
that it means that an object, known as the lintel, is supported by two other
objects, known as posts.

Of course, the objects and relations involved in semantic nets need
not be so concrete. The representation used in the farmer illustration
is a semantic net because particular arrangements of the farmer and his
possessions can be viewed as abstract objects, thereby meriting node status,
and allowed river crossings can be viewed as abstract relations, thereby
meriting link status.

22 Chapter 2 Semantic Nets and Description Matching

Figure 2.3 An ordinary

net (left) and a semantic net
(right). Natural-language
labels associate intuitive

gOOC:/

meanings with .nodes ?nd links, 90075 is-supported-by is-supported-by

thereby producing an informal

semantics. :

R — G088 G0083 Right
post post

Ultimately, both equivalence semantics and procedural semantics lead
back to descriptive semantics. In the case of equivalence semantics, descrip-
tions have meaning because they are equivalent to something that means
something to you. In the case of procedural semantics, descriptions have
meaning because they cause a program to exhibit a behavior that means
something to you. Thus, the alternatives all seem rooted in perceptions to
which you ascribe meaning intuitively.

Theoretical Equivalence Is Different from
Practical Equivalence

In some uninteresting theoretical sense, any computer-based representation
can do anything that any other can do, because computer-based represen-
tations are based, ultimately, on arrangements of bits in memory. Conse-
quently, any representation that can be used to represent arrangements of
bits can be used as a substratum for the construction of any other repre-
sentation.

In a practical sense, however, some representations help you to focus
on the objects and relations you need to solve a class of problems. One
representation, therefore, is more powerful than another because it offers
you more convenience even though, theoretically, both can do the same
work. Conwvenience, however, is perhaps too weak a word. In general, the
good qualities of powerful representations make practicable what would be
impracticable with weak representations.

THE DESCRIBE-AND-MATCH METHOD

In this section, you learn about the describe-and-match method; by way of
illustration, you learn how the describe-and-match method can be used to
identify two-dimensional objects.

As illustrated in figure 2.4 the basic idea behind the describe-and-
match method is that you can identify an object by first describing it
and then searching for a matching description in a description library. The
objects involved may be simple physical entities such as the blocks with

The Describe-and-Match Method 23

Figure 2.4 The describe-and-
match paradigm. To identify

an object, you describe it, and
then you look for a matching
description in a description

library.
I

Object Description Library B
ﬁ SN /O\@ VAN H
S I

Y p\ A Rejects

which children play, or complicated abstractions, such as those that emerge
in the forthcoming examples.

As you move through this book, you will see many methods, such as

the describe-and-match method, reduced to a specification cast in a form
that is more precise than ordinary English, yet more transparent than
a programming language—particularly a programming language that you
do not happen to know. In this book, this informal, half-English, half-
program form is called procedural English. Here is the describe-and-
match method expressed in procedural English:

To identify an object using describe and match,
> Describe the object using a suitable representation.

> Match the object description against library descriptions
until there is a satisfactory match or there are no more
library descriptions.

> If you find a satisfactory match, announce it; otherwise,
announce failure.

In general, procedural English allows all these programming constructs:

m Steps and substeps, denoted by indentation, much after the fashion of
an outline

® Iterations, denoted by words such as until and for each

m Conditional actions, denoted by words such as if and otherwise

B Various sorts of tests, denoted variously

24 Chapter 2 Semantic Nets and Description Matching

Figure 2.5 A feature space.
An unknown object is identified
according to the distances 4
between its feature point

and those of various models.
Evidently the unknown is most

likely to be a single-hole switch 8
plate. Number
of holes
2

<~ Unknown

8 16

Area

Many good programmers use a notation much like procedural English at
the design stage, when they are deciding what a procedure will do. Much of
the procedural English then survives in the form of illuminating comments.

Feature-Based Object identification lllustrates
Describe and Match

Feature-based object identification is one of the simplest applications
of the describe-and-match method. Feature-based object identifiers consist
of a feature extractor and a feature evaluator. The feature extractor
measures simple characteristics such as an object’s area. Values obtained
by the feature extractor become the coordinates of a feature point in
feature space, a multidimensional space in which there is one dimension
for each feature measured. To identify an unknown object, you compare
the distances between its feature point and the feature points of various
idealized objects. The most likely identity of the unknown object is deter-
mined by the smallest distance. Figure 2.5 shows the points corresponding
to an unknown object and a family of idealized electrical-box covers in a
box-cover feature space.

Generally, speed and discrimination considerations determine which
features are used in particular situations. Candidate features for objects

Geometric Analogy Rules Describe Object Relations and Object Transformations 25

Figure 2.6 An easy problem

for the ANALOGY program.

@Eﬁ@DD\

such as electrical-box covers include total object area, hole area, hole count,
perimeter length, minimum distance from center of area to edge, maximum
distance from center of area to edge, average distance from center of area
to edge, length of major axis of ellipse of equal inertia moment, length of
minor axis of ellipse of equal inertia moment, total area minus hole area,
ratio of hole area to total area, and ratio of perimeter squared to area.

THE DESCRIBE-AND-MATCH METHOD
AND ANALOGY PROBLEMS

In this section, you learn that the describe-and-match method, working
in harness with a semantic-net representation, produces impressive perfor-
mance on geometric analogy problems in which the problem, as shown in
figure 2.6, is to select an answer figure, X, such that A is to B as Cis to X
gives the best fit.

One way to start is to describe rules that explain how A becomes B and
how C becomes each of the answer figures. Then, you can match the rule
that explains how A becomes B to each rule that explains how C becomes
an answer. The best match between rules identifies the best answer. Thus,
the describe-and-match paradigm can be used to solve analogy problems.

The key to solving such problems lies in good rule descriptions. The
ANALOGY program, described in this section, does its job by matching rule
descriptions together and measuring description similarity.

Geometric Analogy Rules Describe Object
Relations and Object Transformations

ANALOGY uses two-part rules. One rule part describes how the objects are
arranged in the source and destination figures. One object may be above,
to the left of, or inside of another. The other rule part describes how the
objects in the source figure are transformed into objects in the destination
figure. An object may be scaled, rotated, or reflected, or may be subject

26 Chapter 2 Semantic Nets and Description Matching

Figure 2.7 A rule described
as a geometric analogy net,
which is a kind of semantic | @
net. Rule descriptions consist f

of object-relation descriptions
and object-transformation
descriptions. Links shown n m
solid describe relations among |
source objects and among :
destination objects. Links
shown dotted describe how
objects are transformed
between the source and the

destination.
|

left-of

to some combination of these operations. Also, an object may be added or
deleted.

A typical rule can be described using a semantic-net representation, as
illustrated in figure 2.7. This representation is not just any semantic net,
of course—it is one that is specialized to describe rules:

A geometric analogy net is a representation

That is a semantic net

In which

> The nodes denote dots, circles, triangles, squares, rectan-
gles, and other geometric objects.

> Some links denote relations among figures objects, specif-
ically inside, above, and to the left of.

> Other links describe how figure objects are transformed.
The possibilities are addition, deletion, expansion, con-
traction, rotation, and reflection, and combinations of
these operations.

Geometric Analogy Rules Describe Object Relations and Object Transformations 27

Figure 2.8 Two circles, one
of which is inside a polygon.
One object is inside another if
a line drawn to infinity crosses |
the boundary of the potentially '
surrounding object an odd
number of times. Thus, one

circle is inside; the other is not.
]

You could write this specification for geometric analogy nets, of course,
without any reference to semantic nets, by importing all the descriptive
elements from the semantic-net specification. The alternative shown is bet-
ter, not only because it saves space, but also because it focuses on exactly
what you need to add to transform the general concept into a representa-
tion tailored to a particular circumstance. As you can see, transforming
the semantic-net concept into a geometric analogy net requires only the
application-specific recitation of which link labels are allowed and what
the nodes and links denote.

ANALOGY uses a simple idea, illustrated in figure 2.8, to decide whether
Inside, rather than either Left-of or Above, is the appropriate relation
between objects. First, ANALOGY makes sure that the objects do not
touch. Then, ANALOGY constructs a line from any point on one figure to
infinity, as shown in figure 2.8. If the line crosses the second figure an odd
number of times, then the second figure surrounds the first. Happily, this
method involves only simple line-crossing tests, and it works even if the
figures are extremely convoluted.

As shown in figure 2.9, ANALOGY uses another simple procedure to
compute the spatial relationship between two objects. ANALOGY computes
the center of area of each of the two objects, constructs diagonal lines
through the center of area of one of them, and notes which region contains
the center of area of the other object. Because the relations used are
symmetric, it is not necessary to note both left and right relations.

Finally, ANALOGY uses a matching procedure to decide if an object
in one figure can be transformed into an object in another figure by a
combination of scaling, rotation, and reflection operations. The dotted
links in figure 2.7 mark objects that pass this transformation test.

Now that you have seen how rules are constructed, you can see that
the example in figure 2.10 is contrived so as to depend on only relations

28 Chapter

2 Semantic Nets and Description Matching

Figure 2.9 A square to the
left of a rectangle. Relations
between objects are determined

by comparing centers of area.
S ———— x above y

x left-of y

or

y left-of x

y above x

between objects. No object transformations can influence the solution,
because no objects are transformed in the move from the source figure to
the destination figure.

It is clear that the C-to-3 rule best matches the A-to-B rule because,
with [associated with z and m associated with y, the two rules match
exactly.

Note, however, that there is no a priori reason to associate [with z
rather than with y. In going from the source figure to the destination
figure, you want to be sure that squares go to squares, circles to circles,
triangles to triangles, and so on. But this need to match one object to a
geometrically similar object does not hold in comparing two rules. In the
example, answer 3 is to be selected even though the objects in A and B
are a triangle and a square, whereas in C and in all the answer figures, the
objects are a circle and a dot. In general, ANALOGY must try all possible
ways of associating the nodes when matching rules.

This one-for-one association of variables implies that the number of
objects that move from the source figure to the destination figure must be
the same in both of the two rules. The number of additions and deletions
must be the same as well. Any attempt to match two rules for which the
numbers are different fails immediately.

If n objects move from the source figure to the destination figure in
each of two rules being compared, there will be n! ways of associating the
variables in searching for the best way to match the rules. More generally,

Geometric Analogy Rules Describe Object Relations and Object Transformations 29

unchanged _unchanged
above left-of above above
unchanged _~~ N unchanged

unchanged ___unchanged
above left-of above left-of
unchanged _~—~ N unchanged

Figure 2.10 A
problem whose
solution is determined
by relations only.
Comparison of the rule
descriptions verifies
that the C-to-3 rule

matches best.
|

if n; objects move, n, are added, and n3 deleted, in going to the destination
figure, then ny! ny! ng! is the number of possible associations. All must be
tried.

In the example, there are two possible ways to associate the objects,
because n; = 2, ny, = 0, and ng = 0. Specifically, ANALOGY can associate
I with z and m with y, or ANALOGY can associate | with y and m with z.

The previous example involves only relations between objects, because
no objects are transformed. Symmetrically, for the problem in figure 2.11,
there is only one object in each figure, so there are no relations between

30 Chapter 2 Semantic Nets and Description Matching

rotate by 45 ©

shrink by 2

unchanged

Figure 2.11 A
problem whose
solution is determined
by transformations
only. Because each
figure has only one
object, relations
between objects

are not relevant.
Comparison of the rule
descriptions verifies
that the C-to-1 rule
provides is the best

match.
|

objects, and only object transformations can matter. ANALOGY concludes
that the C-to-1 rule best matches the A-to-B rule, because only answer 1
corresponds to a simple 45° rotation with no reflection or scale change.

Scoring Mechanisms Rank Answers

How should ANALOGY measure the similarity of two rules? So far, the
examples have been so simple that the best answer rule matches the A-to-
B rule exactly. But if an exact match cannot be found, then ANALOGY
must rank the inexact matches. One way to do this ranking is to count the
number of matching elements in the two rules involved in each match, as
shown in figure 2.12.

To tune the counting a bit, you can weight relations describing ob-
ject transformations less heavily than you weight relations describing re-
lations among objects. Assuming that relations among objects each add
one point to the total score, then less than one point should be added for
each object-transformation relation. Experimentally, the numbers shown
in figure 2.13 work well. A radically different set of numbers would reflect

Scoring Mechanisms Rank Answers

Figure 2.12 Rule similarity,
measured by degree of overlap.
You determine the answers by
finding the C-to-X rule with the
maximum number of elements

in common with the A-to-B rule.
.|

Maximize

AtoB /

CtoX

a different judgment about how the various possibilities should be ordered.
The given set is biased toward rotations and against reflections. A different
set might indicate the opposite preference. The corresponding variations on
ANALOGY would occasionally disagree with one another about the answers.
Of course, it is possible to elaborate the measure of similarity in other
directions. Suppose, for example, that Spp is the set of elements in the
A-to-B rule, and that Scx is the set of elements in the C-to-X rule. Then,
SaB N Scx is the set of elements that appear in both rules, Sqag — Scx
is the set of elements appearing in the A-to-B rule but not in the C-to-X
rule, and Scx — Sap is the set of elements appearing in only the C-to-X
rule. With these sets in hand, you can use the following formula to measure
similarity:
Similarity =a x Size(Sag N Scx)
— B x Size(SaB — Scx)
— 7 % Size(Scx — SaB)
where «, 3, and v are weights, and Size is the function that computes the
number of elements in a set. If 3 =0, ¥ = 0, and « = 1, the formula
reduces to counting the common elements. If 3 and v are not the same,
the formula gives asymmetric similarity judgments, allowing, for example,

32 Chapter

2 Semantic Nets and Description Matching

Figure 2.13 Weights
determine transformation-
description contributions to
similarity scores.

05 —T <—— Unchanged
04 —1— <«<—— Scaled
<—— Rotated
0.3 —1— <—— Scaled and rotated
02 —
01 —— «<—— Reflected
<—— Scaled and reflected
<—— Rotated and reflected
0 e <—— Scaled, rotated, and reflected

the A-to-B rule to be more similar to the C-to-X rule than the C-to-X rule
is to the A-to-B rule.

Be skeptical about such formulas, however. Viewed as a representation
for importance, a set of weights is not explicit and exposes little constraint.

Ambiguity Complicates Matching

So far, all the objects in the source and destination figures have distinct
shapes. Consequently, it is easy to decide how to form the rule describing
the transformation. In situations such as the one shown in figure 2.14,
however, there is ambiguity because there is no way to know which of the
two triangles has disappeared. Perhaps the larger one is gone; alternatively
the smaller one may have been deleted and the larger one may have shrunk.
In fact, you cannot judge either explanation to be superior without con-
sidering the other figures given in the problem. Consequently, ANALOGY
must construct two rules, one corresponding to each way the triangles in
the source figure can be identified with triangles in the destination. In
general, for each source and destination pair, many rules are possible; and,
for each rule, there may be many ways to match it against another rule.

Good Representation Supports Good Performance

Examine figure 2.15. It shows three examples, drawn from intelligence
tests, that are well within the grasp of the ANALOGY procedure. In the
first example, the most reasonable theory about the rule for going from A
to B is that the inside object is deleted. The C-to-3 rule is the same, and

Story Plots Can Be Viewed as Combinations of Mental States and Events 33

Figure 2.14 An ambiguous
change. The large triangle may
have been deleted; alternatively,
the small one may have been
deleted and the large one

shrunk.
|

answer 3 is the best answer, with answer 4 a close second. Answer 4 would
be the clear winner if answer 3 were not present.

In the second example, answer 3 is the correct answer. Actually, an-
swer 3 is the only answer figure that ANALOGY considers seriously, because
among the answer figures, only answer 3 has the same number of objects
as B has. Remember that requiring the same number of objects is an in-
direct consequence of permitting a match only between rules for which the
numbers of movements, additions, and deletions are the same.

In the third example, the A-to-B rule could be described as either a
rotation or a reflection, with answer 2 being the best answer if the pro-
cess prefers rotations, and with answer 1 being the best answer if it likes
reflections better. ANALOGY prefers rotations, and judges answer 2 to be
best.

THE DESCRIBE-AND-MATCH METHOD
AND RECOGNITION OF ABSTRACTIONS

In this section, you learn that the describe-and-match method, again work-
ing in harness with a semantic-net representation, can be used to recognize
abstractions in story plots. In combination with what you have already
learned about the describe-and-match method and semantic nets, you see
that both have a broad reach.

Story Plots Can Be Viewed as Combinations of
Mental States and Events

To describe plots using a semantic net, you need a vocabulary of node
types and link labels. Happily, you soon see that you can do a lot with
a vocabulary of just three node types and three link labels. The three
node types are mental states, denoted by MS in diagrams; positive events,
denoted by +; and negative events, denoted by —. The link labels are 1,
an acronym for initiates, meaning that the mental state or event at the
tail of an 4 link leads to the one at the head of the link; ¢, for terminates,

34 Chapter 2 Semantic Nets and Description Matching

Figure 2.15 Three problems
solved successfully by

ANALOGY.
|

AlIA
olE

meaning that the mental state or event at the tail turns off the one at the
head; and c, for corefers, meaning that the mental state or event at the
tail refers to the same mental state or event as the one at the head. Links
labeled with ¢ have two heads: double-headed links are a notational
shorthand for pairs of identically labeled single-headed links pointing in
opposite directions.

With three node types and three link labels, there could be as many
as 3 x 3 x 3 = 27 node-link-node combinations. Of these 27 possibilities,
15 have a natural, easily stated interpretation, and each of these is called
a base unit. In figure 2.16, for example, four base units are exhibited,

Story Plots Can Be Viewed as Combinations of Mental States and Events 35

Figure 2.16 Combinations

in which mental states and Success Failure Enablement Motivation
events initiate one another.

Mental states may initiate
positive events or negative MS + —
events and vice versa. The four

possible combinations constitute
instances of success, failure,
enablement, and motivation, all i i i i

of which are base units.

each of which involves a mental state that initiates an event, or vice versa.
As shown, if a mental state initiates an event, you have what is casually
called a success or a failure, depending on the sign of the event. If an
event initiates a mental state, we witness enablement or motivation, again
depending on the sign.

Another group of base units is shown in figure 2.17. This time, each of
the base units involves two mental states. When one mental state initiates
another, we say that recursion has occurred. When one terminates another,
we have a change of mind. If a mental state persists over a period of time,
the individual involved is exhibiting perseverance.

The final group of base units is shown in figure 2.18. Now there are no
mental states at all; there are only events joined by termination or coref-
erence. The eight combinations are positive tradeoff and negative tradeoff,
positive coreference and negative coreference, loss and resolution, and mized
blessing and hidden blessing.

In descriptions, base units often overlap, producing recognizable aggre-
gates. Let us call these aggregates composite units. Together, base units
and composite units constitute abstraction units. Figure 2.19 shows a
composite unit consisting of a success base unit joined, by its positive event,
to a loss base unit. When a success is followed by a loss, in normal language
we often say that “the success was fleeting,” or use words to that effect.
Hence, this composite unit is called fleeting success.

Other examples of composite units are shown in figure 2.20. Each com-
posite unit in the figure consists of a negative event, followed by a mental
state, followed by a positive event. The composite units differ because
they involve different links, and, hence, different base units. Motivation
followed by success yields success born of adversity; motivation followed by

36 Chapter

2 Semantic Nets and Description Matching

Figure 2.17 Mental states
joined by initiate, terminate,

or corefer links. The three
possible combinations constitute
instances of recursion, change MS MS MS
of mind, and perseverance base

units.

Recursion Change of mind Perseverence

MS MS MS

a positive event that terminates the motivation-producing negative event
is a matter of fortuitous success; and finally, motivation followed by a suc-
cess involving a positive event that terminates the motivation-producing
negative event is intentional problem resolution.

When more than one person is involved, more elaborate arrangements
are possible. In figure 2.21, for example, the situation from one person’s
perspective is a success born of adversity. In addition, however, the nega-
tive event from that person’s perspective corefers to a positive event from
the other person’s perspective. Similarly, the positive event corefers to a
negative event. These additions, together with the success born of adver-
sity, constitute retaliation.

Abstraction-Unit Nets Enable Summary

To recognize abstractions in a story plot, you first describe the story plots
in terms of nodes, representing mental states and events, and links, repre-
senting relations among those mental states and events. Then you match
the nodes and links with items in a catalog of named abstraction units.
Consider, for example, the following story about Thomas and Albert:

Thomas and Albert
Thomas and Albert respected each other’s technical judgment and
decided to form a company together. Thomas learned that Albert
was notoriously absentminded, whereupon he insisted that Albert
have nothing to do with the proposed company’s finances. This
angered Albert so much that he backed out of their agreement,
hoping that Thomas would be disappointed.

Abstraction-Unit Nets Enable Summary

37

Figure 2.18 Positive events
and negative events joined by

terminate or coreference links.

The possible combinations
constitute instances of

eight base units: positive
tradeoff, loss, resolution,
negative tradeoff, positive
coreference, mixed blessing,
hidden blessing, and negative
coreference.

Positive

tradeoff Loss Resolution
t t t

Positive

coreference Mixed blessing Hidden blessing

C C C

Negative
tradeoff

Negative
coreference

C

Figure 2.22 shows what “Thomas and Albert” looks like in semantic-net
terms. The respect abstraction is captured by the two mental states at
the top. Those mental states initiate the decision to form a company, a
positive event from both Thomas’s and Albert’s points of view. Thomas’s
discovery about Albert is a negative event, which leads to a mental state
in which Thomas thinks about the company’s finances, which leads to his
insistence that Albert keep out of them, a positive event as far as Thomas
is concerned. The insistence is a negative event from Albert’s perspective,
however. For Albert, the insistence leads to a mental state that leads to
backing out of the agreement, which Albert views now as a positive event
and Thomas views as a negative one.

38 Chapter 2 Semantic Nets and Description Matching

Figure 2.19 Base units joined
to produce larger, composite
units. In this illustration, a Fleeting success
success unit and a loss unit,
both basic, join to produce a
fleeting success composite unit.
|

Success

Now think of the diagram as a mine for abstraction units. Digging a
little reveals that there are six abstraction units that are not wholly con-
tained in some higher-level abstraction unit. These are called top-level
units. In this particular example, the top-level units are connected to each
other by exactly one shared mental state or one shared event.

Figure 2.23 shows the resulting arrangement of top-level units, in the
form of a top-level abstraction net, with the top-level units shown in the
same relative positions that their pieces occupied in figure 2.22.

To summarize a plot using a top-level abstraction net, you describe
the central top-level unit first. Then, you describe the surrounding top-
level units and explain how those top-level units are related to the central
top-level unit. For the “Thomas and Albert” story, you would produce the
following result:

Abstraction-Unit Nets Enable Summary 39

Figure 2.20 Three different
composite units. In this
illustration, a negative event
always is followed by a mental
state that is followed by a
positive event. In the first
case, a motivation base unit

is followed by a success base
unit producing an instance of
success born of adversity. In
the second, the success unit
disappears and a resolution unit
appears, producing a fortuitous
success. In the third, success
reappears, joining the other
two, producing an intentional

problem resolution.
L]

Success born Fortuitous Intentional
of adversity success problem resolution

+

)

A Summary of Thomas and Albert
Albert retaliated against Thomas because Thomas went through
an intentional problem resolution that was bad for Albert. The
retaliation caused a loss for Thomas and a positive tradeoff for Al-
bert. The loss reversed Thomas’s previous success, and the positive
tradeoff reversed Albert’s previous success.

In addition to enabling summary, top-level abstraction nets allow you to
compare and contrast two situations, even when those two situations are
superficially quite different. Consider the following story about John and
Mary, for example:

John and Mary
John and Mary loved each other and decided to be married. Just
before the wedding, John discovered that Mary’s father was se-
cretly smuggling stolen art through Venice. After struggling with
his conscience for days, John reported Mary’s father to the police.
Mary understood John’s decision, but she despised him for it nev-
ertheless; she broke their engagement knowing that he would suffer.

40 Chapter 2 Semantic Nets and Description Matching

Figure 2.21 Mental states,
positive events, and negative
events linked across perspec-
tives. In this illustration, there ‘ ‘ :
are two perspectives. Each | Perspective 1 : . Perspective 2
perspective involves a positive : ' :

event that is seen as a negative c
event in the other. This particu- § + ;'

Retaliation

lar combination of perspectives,
events, and a mental state is
called a retaliation.
]

On the surface, “John and Mary” seems to have little resemblance to
“Thomas and Albert.” More abstractly, however, both involve a central
retaliation brought on by an intentional problem resolution leading even-
tually to a loss and a positive tradeoff, both of which finish off a previous
success. Such similarities are easy to see, once top-level abstraction nets
are constructed: the stories’ diagrams are exactly the same.

Of course, more complicated stories will have more complicated top-
level abstraction nets. Consider, for example, “The Gift of the Magi,” a
story by O. Henry, with the following plot:

The Gift of the Magi
Della and her husband, Jim, were very poor. Nevertheless, because
Christmas was approaching, each wanted to give something special
to the other. Della cut off and sold her beautiful hair to buy an
expensive watch fob for Jim’s heirloom gold watch. Meanwhile,
Jim sold his watch to buy some wonderful combs for Della’s hair.
When they found out what they had done, they were sad for a
moment, but soon realized that they loved each other so much,

nothing else mattered.

Abstraction Units Enable Question Answering 41

Figure 2.22 Two stories
viewed as aggregates of
abstraction units, both base and
composite. In this illustration,
there are two perspectives,
Thomas’s and Albert’s, and six

top-level abstraction units.
.|

Thomas's Albert's
perspective perspective
c
Respect MS MS Respect
t i
Form c Form
company + + company

Discove

Thought

Ban

Anger

Thought

Withdrawal

Disappointment ®< >

Figure 2.24 shows one plausible set of nodes and links for the story; those
nodes and links lead to the top-level abstraction net shown in figure 2.25.

Abstraction Units Enable Question Answering

Abstraction units allow you to answer certain questions by matching. Here
are examples:

What is the story about? Answer by naming the central abstraction
unit in the top-level abstraction net. For example, “Thomas and Al-
bert” is about retaliation.

What is the result? Answer by naming the abstraction units that are
joined to earlier abstraction units in the top-level abstraction net, but

42 Chapter

2 Semantic Nets and Description Matching

Figure 2.23 A top-level
abstraction net formed from the
top-level units of figure 2.22.
This top-level abstraction net
enables you to build a summary
description around the most
highly linked top-level unit, the

retaliation.
|

Success
A
Intentional
problem
resolution
overlaps
overlaps

overlaps

Retaliation

overlaps

overlaps

Positive
tradeoff

not to later abstraction units. For example, the result in “Thomas and
Albert” is a loss and a positive tradeoff.

Does the story involve a certain abstraction? Answer by checking for
the appropriate abstraction unit. For example, “Thomas and Albert”
does contain an instance of intentional problem resolution.

In what way is one story like another? Answer by naming the most
highly connected abstraction unit that appears in both top-level ab-
straction nets. If hard pressed, enumerate the other abstraction units
that appear in both. For example, “Thomas and Albert” is like “John
and Mary” in that both involve retaliation. Moreover, both involve
success, intentional problem resolution, loss, and positive tradeoff.

In all these examples, you could give more detailed answers by naming the
people and the events involved in the abstraction units mentioned.

Abstraction Units Make Patterns Explicit

In this section, you have seen how a base-unit semantic net facilitates sim-
ilarity analysis and summary by making mental states, events, and links
between them explicit. Thus, the first criterion of good representation—
that something important is made usefully explicit—is satisfied. Some
people argue, however, that a base-unit semantic net does not yet pass the
computability criterion for good representation because there is no fully
specified way to translate text into abstraction-unit patterns.

Problem Solving and Understanding Knowledge

43

Figure 2.24 The mental
states, positive events, and
negative events of “The Gift

of the Magi.”
L]

Jim's
perspective

Della's
perspective

Wants to give gift

Wants gift (combs, fob)

Wants money

Wants to sell (watch, hair)

Sells (watch, hair)

Gets money

Gives gift
\
Receives gift @
t
Regrets
c c
Appreciates

PROBLEM SOLVING AND
UNDERSTANDING KNOWLEDGE

When approaching a new class of problems, to be solved either by you or by
a computer, you always should start by asking yourself certain questions
about knowledge. This section discusses a few questions about knowl-
edge that are particularly important.

44 Chapter 2 Semantic Nets and Description Matching

Figure 2.25 The top-level

abstraction unit net for “The
Gift of the Magi.” Al links are @‘;;‘:5‘9

overlaps links.
L]

Recursmn Hudden
blessmg

Regrettable
mistake

Hidden Recursion
blessing

m What kind of knowledge is involved?

Perhaps the important knowledge concerns the description of concrete or
abstract objects. Alternatively, perhaps the important knowledge is about
a problem-solving method.

m How should the knowledge be represented?

Some knowledge may, for example, fit nicely within the semantic-net frame-
work. Other knowledge is best embedded in a collection of procedures.
There are many possibilities.

® How much knowledge is required?

After learning what kind of knowledge is involved in a task, this question
should be the one you ask. Are there 40 things to know, or 400, or 4,0007

One reason to ask about quantity is that you must consider the de-
mand for sensible resource allocation among the various chores required.
Another is that knowing the size of a problem builds courage; even if the
size is large, digesting bad news is better than anticipating even worse news
unnecessarily.

In any event, the tendency is to overestimate grossly; after seeing that
a task is reasonably complicated, it is easy to suppose that it is unimag-
inably complicated. But many tasks can be performed with human-level
competence using only a little knowledge.

m What exactly is the knowledge needed?

Ultimately, of course, you need the knowledge. To do geometric analogy
problems, you need to know what relations are possible between figure
parts, and you need to know how parts can change. To recognize abstrac-
tions, you need a library of base and composite abstraction units. Much of
learning any subject, from electromagnetic theory to genetics, is a matter
of collecting such knowledge.

Background 45

SUMMARY

Once a problem has been described using an appropriate representa-
tion, the problem is almost solved.

® A representation consists of a lexical part, a structural part, a proce-
dural part, and a semantic part.

® There are many schools of thought about the meaning of semantics.
Ultimately, meaning always seems to be rooted in human perception
and human intuition.

m Feature-based object identification illustrates the describe-and-match
method. An unknown object is identified with an idealized object if
their feature points are nearest neighbors in feature space.

B Geometric analogy rules describe object relations and object transfor-
mations. You solve geometric analogy problems by determining which
rules are most similar.

@ Story plots can be viewed as combinations of mental states and events.

® Abstraction-unit nets enable certain kinds of summary and question
answering.

® Good representations make important objects and relations explicit,
expose natural constraints, and bring objects and relations together.

BACKGROUND

The discussion of geometric analogy problems is based on work by Thomas
Evans [1963]. The discussion of plot units is based on the work of Wendy
Lehnert; the “John and Mary” story and the analysis of “The Gift of the
Magi,” in particular, are adapted from one of her highly influential papers
[1981].

Feature vectors, and object identification using feature vectors, are

described in more detail in Robot Vision, by Berthold K. P. Horn [1984].

Generate and Test
Means-Ends Analysis
and Problem Reduction

In this chapter, you learn about three powerful problem-solving meth-
ods: generate and test, means—ends analysis, and problem reduction. You
also learn about two new representations, both of which can be viewed
as special cases of the semantic-net representation introduced in Chap-
ter 2. One is the state-space representation, introduced in the discussion
of means-ends analysis, and another is the goal tree, introduced in the
discussion of problem reduction.

By way of illustration, you see how a program can find the combination
to a safe, plan a route from one city to another, and solve motion-planning
problems in a world populated by a child’s blocks.

Once you have finished this chapter, you will be able to identify and
deploy three more problem-solving methods and two more representations,
thus adding considerably to your personal representation and method col-
lections. You will also begin to see that you yourself use similar represen-
tations and methods daily as you solve problems.

THE GENERATE-AND-TEST METHOD

Problem solvers adhering to the generate-and-test paradigm use two
basic modules, as illustrated in figure 3.1. One module, the generator,

47

48 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.1 The generate-
and-test method involves a
generator and a tester.

L] Generator

Possible Correct
solutions ﬂ‘ solution
ONONONONONONONG O

O
O
Incorrect

O «—— |
5 / solutions

enumerates possible solutions. The second, the tester, evaluates each pro-
posed solution, either accepting or rejecting that solution.

The generator may generate all possible solutions before the tester
takes over; more commonly, however, generation and testing are interdig-
itated. Action may stop when one acceptable solution is found, or action
may continue until some satisfactory number of solutions is found, or action
may continue until all possible solutions are found. Here is the interdigi-
tated, stop-when-acceptable version in procedural English:

To perform generate and test,

> Until a satisfactory solution is found or no more candidate
solutions can be generated,

> Generate a candidate solution.
> Test the candidate solution.

> If an acceptable solution is found, announce it; otherwise,
announce failure.

In the rest of this section, you learn more about the generate-and-test
method, you learn which sort of problems the generate-and-test method
solves, and you learn several criteria that good generators always satisfy.

Generate-and-Test Systems Often Do Identification

The generate-and-test paradigm is used most frequently to solve identifica-
tion problems. In identification problems, the generator is said to produce
hypotheses.

Good Generators Are Complete, Nonredundant, and Informed 49

Figure 3.2 Burgling a safe
using the generate-and-test
paradigm. The generator

is the procedure that the
burglar uses to select and dial
combinations. The tester is the
procedure that the burglar uses
to work the handle. Careful
safecrackers make sure that
they try all possibilities, without
any repeats, until a twist of the

handle opens the safe.
.|

S\‘ "",ﬁ]
/> i

To use the generate-and-test paradigm to identify, say, a tree, you can

reach for a tree book, then thumb through it page by page, stopping when
you find a picture that looks like the tree to be identified. Thumbing
through the book is the generation procedure; matching the pictures to
the tree is the testing procedure.

To use generate and test to burgle a three-number, two-digit safe, you
can start with the combination 00-00-00, move to 00-00-01, and continue
on through all possible combinations until the door opens. Of course, the
counting is the generation procedure, and the twist of the safe handle is
the testing procedure.

The burglar in figure 3.2 may take some time to crack the safe with
this approach, however, for there are 100 = 1 million combinations. At
three per minute, figuring that he will have to go through half of the com-
binations, on average, to succeed, the job will take about 16 weeks, if he
works 24 hours per day.

Good Generators Are Complete, Nonredundant, and Informed

It is obvious that good generators have three properties:

m Good generators are complete: They eventually produce all possible
solutions.

@ Good generators are nonredundant: They never compromise efficiency
by proposing the same solution twice.

® Good generators are informed: They use possibility-limiting informa-
tion, restricting the solutions that they propose accordingly.

Informability is important, because otherwise there are often too many
solutions to go through. Consider the tree-identification example. If it is

50

Chapter

3 Generate and Test, Means-Ends Analysis, and Problem Reduction

winter and a tree you are trying to identify is bare, you do not bother going
through a tree book’s conifer section.

Similarly, if a burglar knows, somehow, that all of the numbers in a
safe combination are prime numbers in the range from 0 to 99, then he can
confine himself to 253 = 15625 numbers, getting the safe open in less than
2 days, on the average, instead of in 16 weeks.

THE MEANS-ENDS ANALYSIS METHOD

The state of a system is a description that is sufficient to determine the
future. In a state space, each node denotes a state, and each link denotes
a possible one-step transition from one state to another state:

A state space is a representation

That is a semantic net

In which

> The nodes denote states.

> The links denote transitions between states.

Thus, a state space is a member of the semantic-net family of representa-
tions introduced in Chapter 2.

In the context of problem solving, states correspond to where you are
or might be in the process of solving a problem. Hence, the current state
corresponds to where you are, the goal state corresponds to where you
want to be, and the problem is to find a sequence of transitions that leads
from the initial state to the goal state.

In the rest of this section, you learn about means—ends analysis, a
standard method for selecting transitions. You also learn about one popular
way to implement means—ends analysis using a simple table.

The Key Idea in Means-Ends Analysis Is to Reduce Differences

The purpose of means—ends analysis is to identify a procedure that
causes a transition from the current state to the goal state, or at least to
an intermediate state that is closer to the goal state. Thus, the identified
procedure reduces the observed difference between the current state and
the goal state.

Consider the states shown in figure 3.3. Solid-line nodes identify the
current state and the goal state. Dotted-line nodes correspond to states
that are not yet known to exist. Descriptions of the current state, or of the
goal state, or of the difference between those states, may contribute to the
identification of a difference-reducing procedure.

In figure 3.4, a sequence of procedures P1,...,P5 cause transitions
from state to state, starting from the initial current state. Each of the

DENDRAL Analyzes Mass Spectrograms

DENDRAL is one of the great classic application programs. To see what it does,
suppose that an organic chemist wants to know the chemical nature of some sub-
stance newly created in the test tube. The first step, not the one of concern here,
is to determine the number of atoms of various kinds in one molecule of the stuff.
This step determines the chemical formula, such as CgH160. The notation indicates
that each molecule has eight atoms of carbon, 16 of hydrogen, and one of oxygen.

Once a sample’s chemical formula is known, the chemist may use the sample’s
mass spectrogram to work out the way the atoms are arranged in the chemical’s
structure, thus identifying the isomer of the chemical.

The spectrogram machine bombards a sample with high energy electrons, caus-
ing the molecules to break up into charged chunks of various sizes. Then, the
machine sorts the chunks by passing them through a magnetic field that deflects the
high-charge, low-weight ones more than it does the low-charge, high-weight ones.
The deflected chunks are collected, forming a spectrogram like the following:

Relative
frequency

i, il 1| ‘ |
[

T I I I T I I

40 80 120

Mass/charge

The purpose of DENDRAL is to work, like a knowledgeable chemist, from a
chemical formula and spectrogram to a deduced structure, producing a chemical
structure like this:

CHz — CH; — C — CH; — CHy — CH; — CHy — CHg

I
o}

The DENDRAL program works out structures from chemical formulas and mass
spectrograms using the generate-and-test method. The generator consists of a struc-
ture enumerator and a synthesizer that produces a synthetic mass spectrogram by
simulating the action of a real mass spectrometer on each enumerated structure.

The structure enumerator ensures that the overall generator is complete and
nonredundant because the structure enumerator uses a provably complete and nonre-
dundant structure-enumeration procedure. The overall generator is also informed,
because the structure enumerator uses the chemical formula and knowledge about
necessary and forbidden substructures.

The tester compares the real mass spectrogram with those produced by the
generator. The possible structures are those whose synthetic spectrograms match
the real one adequately. The structure judged correct is the one whose synthetic
spectrogram most closely matches the real one.

52 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.3 Means—ends
analysis involves states and
procedures for reducing
differences between states. The
current state and goal state are
shown solid; other states, not
yet encountered, are shown
dotted.

Current state

)

Goal state

@

Figure 3.4 Means—ends
analysis produces a path
through state space. The
current state, the goal state,
and a description of their
difference determine which
procedure to try next. Note that
the procedures are expected,
but not guaranteed, to cause

a transition to a state that is
nearer the goal state than is the

current state.
R

procedures is selected because it is believed to be relevant to reducing the
difference between the state in which it was applied and the goal state.
Note, however, that procedure P3 takes the problem solver farther away
from the goal; there is no built-in mechanism preventing backward steps in
the most general form of means—ends analysis. Fortunately, procedure P4

Initial state

P1
Current state K

o

PS5

Goal state

Difference

and procedure P5 take the problem solver back toward the goal.

cisely, in procedural English:

In summary, here is the means—ends procedure expressed, more pre-

The Problem-Reduction Method 53

To perform means—ends analysis,

> Until the goal is reached or no more procedures are avail-
able,
> Describe the current state, the goal state, and the dif-
ference between the two.
> Use the difference between the current state and goal
state, possibly with the description of the current state
or goal state, to select a promising procedure.

> Use the promising procedure and update the current
state.

> If the goal is reached, announce success; otherwise, an-
nounce failure.

Difference-Procedure Tables Often Determine the Means

Whenever the description of the difference between the current state and
the goal state is the key to which procedure to try next, a simple difference-
procedure table may suffice to connect difference descriptions to pre-
ferred procedures.t

Consider, for example, a travel situation in which the problem is to
find a way to get from one city to another. One traveler’s preferences
might link the preferred transportation procedure to the difference between
states, described in terms of the distance between the cities involved, via
the following difference-procedure table:

Distance Airplane Train Car
More than 300 miles Vv

Between 100 and 300 miles Vv

Less than 100 miles Vv

Thus, the difference-procedure table determines generally what to do, leav-
ing descriptions of the current state and destination state with no purpose
other than to specify the origin and destination for the appropriate proce-
dure.

THE PROBLEM-REDUCTION METHOD

Sometimes, it is possible to convert difficult goals into one or more easier-
to-achieve subgoals. Each subgoal, in turn, may be divided still more finely
into one or more lower-level subgoals.

tBecause transition-causing procedures are often called operators, a difference-
procedure table is called a difference-operator table in some circles.

54 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.5 MOVER is a
procedure for planning motion

sequences in the world of I
bricks, pyramids, balls, and a
robot hand.

When using the problem-reduction method, you generally recog-
nize goals and convert them into appropriate subgoals. When so used,
problem reduction is often called, equivalently, goal reduction.

In the rest of this section, you learn more about the problem-reduction
method, you learn which problems the problem-reduction method solves,
and you learn how the problem-reduction method makes it easy to answer
certain “why?” and “how?” questions.

Moving Blocks lllustrates Problem Reduction

The MOVER procedure solves problems in block manipulation and answers
questions about its own behavior. MOVER works with blocks such as the
one shown in figure 3.5, obeying commands such as the following:

Put <block name> on <another block name>.

To obey, MOVER plans a motion sequence for a one-handed robot that
picks up only one block at a time. MOVER consists of procedures that
reduce given problems to simpler problems, thus engaging in what is called
problem reduction. Conveniently, the names of these procedures are
mnemonics for the problems that the procedures reduce. Figure 3.6 shows
how the procedures fit together.

m PUT-ON arranges to place one block on top of another block. It works by
activating other procedures that find a specific place on the top of the
target block, grasping the traveling block, moving it, and ungrasping
it at the specific place.

W GET-SPACE finds space on the top of a target block for a traveling block.

B MAKE-SPACE helps GET-SPACE, when necessary, by moving obstruc-
tions until there is enough room for a traveling block.

B GRASP grasps blocks. If the robot hand is holding a block when GRASP
is invoked, GRASP must arrange for the robot hand to get rid of that

Moving Blocks Illustrates Problem Reduction 55

Figure 3.6 Specialists for

moving blocks. PUT-ON <
]

L—) GET-SPACE —>» MAKE-SPACE —

GRASP ——> CLEAR-TOP

v

GET-RID-OF€——

——> MOVE ‘

—— > UNGRASP

block. Also, GRASP must arrange to clear off the top of the object to
be grasped.

B CLEAR-TOP does the top clearing. It works by getting rid of everything
on top of the object to be grasped.

B GET-RID-OF gets rid of an obstructing object by putting it on the table.

® UNGRASP makes the robot’s hand let go of whatever it is holding.

@ MOVE moves objects, once they are held, by moving the robot hand.

Now imagine that there is a request to put block A on block B, given the
situation shown in figure 3.5. Plainly, the following sequence suffices:

Grasp D.

Move D to some location on the table.
Ungrasp D.

Grasp C.

Move C to some location on the table.
Ungrasp C.

Grasp A.

Move A to some location on B.
Ungrasp A.

The question is, How do the procedures in MOVER find the appropriate
sequence? Here is the answer:

First, PUT-ON asks GET-SPACE to identify a place for block A on top
of block B. GET-SPACE appeals to MAKE-SPACE because block D is in the
way.

56 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.7 A goal tree.

Branches connect supergoals

to simpler subgoals.

—_— @

Hard problem

O O O

Simpler problem Simpler problem Simpler problem

MAKE-SPACE asks GET-RID-OF to help by getting rid of block D. GET-
RID-OF obliges by finding a place for block D on the table and by moving
block D to that place using PUT-ON.

Note that PUT-ON, at work placing block A on block B, eventually
produces a new job for PUT-ON itself, this time to put block D on the
table. When a procedure uses itself, the procedure is said to recurse.
Systems in which procedures use themselves are said to be recursive.

With block D gone, MAKE-SPACE can find a place for block A to go
on top of block B. Recall that MAKE-SPACE was asked to do this by GET-
SPACE because PUT-ON has the duty of putting block A on B. PUT-ON can
proceed now, asking GRASP to grasp block A. But GRASP realizes that it
cannot grasp block A because block C is in the way. GRASP asks CLEAR-
TOP for help. CLEAR-TOP, in turn, asks GET-RID-OF for help, whereupon
GET-RID-OF arranges for block C to go on the table using PUT-ON.

With block A cleared, CLEAR-TOP is finished. But if there were many
blocks on top of block A, rather than just one, CLEAR-TOP would appeal
to GET-RID-OF many times, rather than just once.

Now GRASP can do its job, and PUT-ON can ask MOVE to move block
A to the place found previously on top of block B. Finally, PUT-ON asks
UNGRASP to let block A go.

The Key Idea in Problem Reduction Is to Explore a Goal Tree

A semantic tree is a semantic net with special links, called branches,
each of which connects two nodes:

Goal Trees Can Make Procedure Interaction Transparent 57

A semantic tree is a representation
That is a semantic net
In which

> Certain links are called branches. Each branch connects
two nodes; the head node is called the parent node and
the tail node is called the child node

> One node has no parent; it is called the root node. Other
nodes have exactly one parent.

> Some nodes have no children; they are called leaf nodes.

> When two nodes are connected to each other by a chain
of two or more branches, one is said to be the ancestor;
the other is said to be the descendant.

With constructors that

> Connect a parent node to a child node with a branch link
With readers that

> Produce a list of a given node’s children

> Produce a given node’s parent

A goal tree, like the one shown in figure 3.7, is a semantic tree in which
nodes represent goals and branches indicate how you can achieve goals
by solving one or more subgoals. Each node’s children correspond to
immediate subgoals; each node’s parent corresponds to the immediate
supergoal. The top node, the one with no parent, is the root goal.

Goal Trees Can Make Procedure Interaction Transparent

A goal tree, such as the one in figure 3.8, makes complicated MOVER sce-
narios transparent. Clearing the top of block A is shown as an immediate
subgoal of grasping block A. Clearing the top of block A is also a subgoal
of putting block A at a place on top of block B, but it is not an immediate
subgoal.

All the goals shown in the example are satisfied only when all of their
immediate subgoals are satisfied. Goals that are satisfied only when all
of their immediate subgoals are satisfied are called And goals. The corre-
sponding nodes are called And nodes, and you mark them by placing arcs
on their branches.

Most goal trees also contain Or goals; these goals are satisfied when any
of their immediate subgoals are satisfied. The corresponding, unmarked
nodes are called Or nodes.

Finally, some goals are satisfied directly, without reference to any sub-
goals. These goals are called leaf goals, and the corresponding nodes are
called leaf nodes.

58 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Because goal trees always involve And nodes, or Or nodes, or both,
they are often called And—Or trees.

To determine whether a goal has been achieved, you need a testing
procedure. The key procedure, REDUCE, channels action into the REDUCE-
AND and the REDUCE-OR procedures:

To determine, using REDUCE, whether a goal is achieved,

> Determine whether the goal is satisfied without recourse
to subgoals:

> If it is, announce that the goal is satisfied.

> Otherwise, determine whether the goal corresponds to
an And goal:

> If it does, use the REDUCE-AND procedure to deter-
mine whether the goal is satisfied.

> Otherwise, use the REDUCE-OR procedure to deter-
mine whether the goal is satisfied.

REDUCE uses two subprocedures: one deals with And goals, and the other
deals with Or goals:

To determine, using REDUCE-AND, whether a goal has been
satisfied,

> Use REDUCE on each immediate subgoal until there are
no more subgoals, or until REDUCE finds a subgoal that is
not satisfied.

> If REDUCE has found a subgoal that is not satisfied, an-
nounce that the goal is not satisfied; otherwise, announce
that the goal is satisfied.

To determine, using REDUCE-OR, whether a goal has been
satisfied,

> Use REDUCE on each subgoal until REDUCE finds a subgoal
that is satisfied.

> If REDUCE has found a subgoal that is satisfied, announce
that the goal is satisfied; otherwise, announce that the
goal is not satisfied.

With REDUCE, REDUCE-AND, and REDUCE-OR in hand, it is a simple matter
to test an entire And-Or tree: you just use REDUCE on the root node,

Goal Trees Enable Introspective Question Answering 59

PUT-ONAB
GET-SPACEAB GRASP A MOVEAB UNGRASP A
MAKE-SPACE AB CLEAR-TOP A
GET-RID-OF D GET-RID-OF C
PUT-ON D Table PUT-ON C Table
GET-SPACE D Table GET-SPACE C Table
GRASP D GRASP C
MOVE D Table MOVE C Table

A\ A

UNGRASP D UNGRASP C

Figure 3.8 A goal

tree. Branches joined
by arcs are under And
nodes; other branches

are under Or nodes.
]

permitting the various procedures to call one another, as necessary, to
work their way down the tree.

Goal Trees Enable Introspective Question Answering

The MOVER program is able to build And—Or trees because the specialists
have a tight correspondence to identifiable goals. Indeed, MOVER’s And—
Or trees are so illuminating, they can be used to answer questions about
how and why actions have been taken, giving MOVER a certain talent for
introspection into its own behavior.

Suppose, for example, that MOVER has put block A on block B, pro-
ducing the goal tree shown in figure 3.8.

Further suppose that someone asks, How did you clear the top of A?
Plainly, a reasonable answer is, By getting rid of block C. On the other
hand, suppose the question is, Why did you clear the top of A? Then a
reasonable answer is, To grasp block A.

These examples illustrate general strategies. To deal with “how?”
questions, you identify the goal involved in the And—Or tree. If the goal is
an And goal, report all of the immediate subgoals. If the goal is an Or goal,

60 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

you report the immediate subgoal that was achieved. To deal with “why?”
questions, you identify the goal and report the immediate supergoal.

Problem Reduction Is Ubiquitous in Programming

From a programming point of view, MOVER consists of a collection of
specialized procedures. Each time one specialized procedure calls another,
it effects a problem-reduction step.

More generally, whenever one procedure calls a subprocedure, there is
a problem reduction step. Thus, problem reduction is the problem-solving
method that all but the shortest programs exhibit in great quantity.

Problem-Solving Methods Often Work Together

Few real problems can be solved by a single problem-solving method. Ac-
cordingly, you often see problem-solving methods working together.

Suppose, for example, that you want to go from your house near Boston
to a friend’s house near Seattle. Earlier in this chapter, you learned that
you can use means—ends analysis to decide what sort of transportation is
most preferred for reducing the distance between where you are and where
you want to be. Because the distance between Boston and Seattle is large,
means—ends analysis doubtlessly would suggest that you take an airplane,
but taking an airplane solves only part of your problem: You still have to
figure out how get to the Boston airport from your house, and how to get
from the Seattle airport to your friend’s house. Thus, the initial goal, as
shown in figure 3.9, becomes three subgoals, each of which can be handled,
perhaps, by means—ends analysis.

SUMMARY

@ Generate-and-test systems often do identification. Good generators are
complete, nonredundant, and informed.

® The key idea in means—ends analysis is to reduce differences. Means—
ends analysis is often mediated via difference-procedure tables.

m The key idea in problem reduction is to explore a goal tree. A goal
tree consists of And goals, all of which must be satisfied, and Or goals,
one of which must be satisfied.

® Problem reduction is ubiquitous in programming because subprocedure
call is a form of problem reduction.

m The MOVER program uses problem reduction to plan motion sequences.
While MOVER is at work, it constructs a goal tree that enables it to
answer how and why questions.

62 Chapter 3 Generate and Test, Means-Ends Analysis, and Problem Reduction

Figure 3.9 Frequently,

problem-solving methods Goal:

work together. Here, a travel travel from your house
problem is split apart, using to friend's house
problem reduction, into pieces Q
susceptible to solution using

means—ends analysis.
]

O O O

Goal: Goal: Goal:
travel to travel from travel from
Boston airport Boston airport Seattle airport
to Seattle airport to friend's house
BACKGROUND

Means—ends analysis became conspicuous through pioneering work on GPs,
the general problem solver system. Early work on GPs is described by Allen
Newell et al. [1957].

The discussion of MOVER is based on part of a system built by Terry
Winograd [1971]. The main thrust of Winograd’s early work was to show
how a computer can be made to accept commands and questions expressed
in English.

DENDRAL was developed primarily by Edward A. Feigenbaum, Bruce
Buchanan, and Joshua Lederberg and their students. DENDRAL is de-
scribed in great detail by Robert Lindsay et al. [1969].

SAINT was conceived and developed by James R. Slagle [1961]. SAINT
was subsequently superseded by programs based on SIN, a program written
by Joel Moses [1967].

Rules
Substrates and
Cognitive Modeling

In this chapter, you learn that you can build important capabilities
on top of the rule-chaining problem-solving method. In particular, simple
ideas enable rule-based systems to ezplain the steps that have led to a
conclusion, to reason in a variety of styles, to reason under time constraints,
to determine a conclusion’s probability, and to check the consistency of a
newly proposed rule.

You learn about knowledge engineering, and about two key heuristics
that knowledge engineers use to acquire rules from human experts.

You also learn that rule-based systems have limits, when viewed from
an engineering perspective, that render them too weak to be a universal
tool for implementers who desire to capture all the characteristics of human
experts. Accordingly, you will know that you should avoid the misnomer
expert system, which commonly is used for rule-based systems that really
perform at a level more like that of a novice.

Nevertheless, some cognitive scientists believe rules and rule chaining
constitute part of a larger explanation of human information processing. By
way of illustration, you learn about the SOAR problem-solving architecture.

RULE-BASED SYSTEMS VIEWED AS SUBSTRATE

In this section, you learn about the benefits and limitations that follow
from using rules to represent knowledge and using rule chaining to solve
problems. You also learn how to extract knowledge in general and rules in
particular from human experts.

163

164

Chapter

8 Rules, Substrates, and Cognitive Modeling

Explanation Modules Explain Reasoning

One way to show what a set of antecedent—consequent rules can do is to
draw an inference net like those introduced in Chapter 7: one showed
how forward chaining led to the conclusion that a particular animal is a
giraffe; and another led to the verification of an hypothesis that a particular
animal is a cheetah.

Sometimes, it is useful to look at part of an inference net to answer
questions about why an assertion was used or about how an assertion was
established. Much of this ability stands on the simple, highly constrained
nature of rules. To decide how a given assertion was concluded, a rule-based
deduction system needs to reflect cnly on the antecedent—consequent rules
it has used, looking for those that contain the given assertion as a conse-
quent. The required answer is just an enumeration of those antecedent—
consequent rules, perhaps accompanied by information about their trigger-
ing assertions.

Consider, for example the cheetah example from Chapter 7. In that
example, rule Z6 was used as shown in figure 8.1. Accordingly, if you ask
ZOOKEEPER “How did you show that Swifty is a carnivore?” then Zoo-
KEEPER can determine the answer by moving to the left, saying, “By using
rule Z6 and by knowing that Swifty is a mammal, has pointed teeth, claws,
and forward-pointing eyes.” If you ask “Why did you show that Swifty is a
mammal?”’ then ZOOKEEPER can determine the answer by moving to the
right, saying, “Because I wanted to use rule Z6 to show that the animal
is a carnivore.” Here, by way of summary, is the procedure ZOOKEEPER
uses:

To answer a question about the reasoning done by a rule-
based deduction system,

> If the question is a how question, report the assertions

connected to the if side of the rule that established the
assertion referenced in the question.

> If the question is a why question, report the assertions
connected to the then sides of all rules that used the as-
sertion referenced in the question.

Other questions, such as “Did you use rule Z6?” and “When did you use
rule Z6?” are also easy to answer.

Of course, this ability to answer questions is not a surprise: you learned
in Chapter 3 that goal trees always enable you to answer simple how and
why questions, and an inference net always contains an implied goal tree.
Figure 8.2 shows the goal tree that reaches from assertions at the bottom,
through antecedent—consequent rules, to the cheetah conclusion at the top.

Reasoning Systems Can Exhibit Variable Reasoning Styles 165

Figure 8.1 Rule-based
systems retain a history of

how they have tied assertions
together, enabling a kind of
introspection. The system
answers How did you show

... 7 by moving one step
backward, mentioning rules and
antecedents; it answers Why
did you show . .. ? questions

by moving one step forward.
]

How? Why?
_ —————
Is a mammal

Is a carnivore

rHas pointed teeth L)
I Has claws ’_>

l Has forward-pointing eyes

Z6

Figure 8.2 An inference net
can be used to produce a
goal tree. Each node in this
goal tree corresponds to the
application of an antecedent—

consequent rule.
|

Is a cheetah

T

Is a carnivore Has a tawny color Has dark spots
Isa Has Has Has
mammal pointed claws forward-pointing
teeth eyes
Has hair

Reasoning Systems Can Exhibit Variable Reasoning Styles

Rule-based systems are often used in domains in which some assertions are
almost certainly true and others are almost certainly false.

In the horse-evaluation system, taken up in Chapter 7, the principal

rule says that a horse is valuable if it has parented something fast, which
is a way of saying that a horse qualifies as a good stud or brood mare.

Nevertheless, the conclusion breaks down if a horse happens to become

sterile, so a more reliable rule should say something about fertility:

166 Chapter 8 Rules, Substrates, and Cognitive Modeling

Fertile-Parent Rule
If ?z is-a horse
?z is-a-parent-of 2y
?y is fast
7z is fertile
then ?zis valuable

If you try to use a system containing this rule at an auction, however, you
will not buy many horses, because it is time consuming and expensive to
determine whether a horse is fertile. Accordingly, you might well elect to
assume that all horses are fertile, banishing the 7z is fertile antecedent to
a new part of the rule where providing assumptions are collected:

Modified Fertile-Parent Rule

If 2z is-a horse
91 is-a-parent-of 2y
2y is fast

then ?z is valuable

providing %z is fertile

Now you can arrange, easily, for your system to run in two modes:

® Show-me mode: Treat the providing assumptions as though they
were ordinary antecedents; thus, refuse to accept anything that is not
shown.

® Ask-questions-later mode: Ignore all providing assumptions. This
mode is good in situations in which rapid response is more important
than careful analysis.

You can even incorporate unless assumptions into your rules to comple-
ment the providing assumptions. Here is fanciful example:

Live-Horse Rule
If ?z is-a horse
9z is-a-parent-of %y
2y is fast
?z is alive
then ?zis valuable
Taking the likelihood of thinking about the value of a dead horse to be

small, you can rewrite the Live-Horse Rule as follows, moving the %z is
alive assertion to a new part of the rule where unless assumptions are

collected:
Modified Live-Horse Rule
If 2z is-a horse
2z is-a-parent-of %y
%y is fast
then 2z is valuable

unless 2z is dead

Two Key Heuristics Enable Knowledge Engineers to Acquire Knowledge 167

In ask-questions-later mode, unless assumptions are ignored, but in show-
me mode, unless patterns are treated as ordinary antecedents, except that
they appear in negated form. Thus, ?z is dead becomes ?z is alive.

Of course, there are other ways to treat providing assumptions and
unless assumptions, in addition to show-me mode and ask-questions-later
mode. Essentially, each way specifies whether you work on providing as-
sumptions and unless assumptions using assertions or rules or neither or
both. Here are representative examples:

8 Decision-maker mode: Assume that providing assumptions are true.
Assume that unless assumptions are false, unless they match existing
assertions.

® Trusting-skeptic mode: Assume that providing assumptions are
true and that unless assumptions are false, unless you can show other-
wise with a single rule. This mode is called the trusting-skeptic mode
because you assume that the likelihood of overturning providing and
unless assumptions is small and therefore trying to overturn them is
worthy of but little effort.

® Progressive-reliability mode: Produce an answer in ask-questions-
later mode, and then, as time permits, explore more and more of the
providing and unless assumptions, producing a more and more reliable
answer. This mode is reminiscent of the progressive deepening idea,
introduced in Chapter 6, in connection with adversarial search.

Probability Modules Help You to Determine
Answer Reliability

Rule-based deduction systems used for identification usually work in do-
mains where conclusions are rarely certain, even when you are careful
to incorporate everything you can think of into rule antecedents. Thus,
rule-based deduction system developers often build some sort of certainty-
computing procedure on top of the basic antecedent—consequent apparatus.
Generally, certainty-computing procedures associate a probability between
0 and 1 with each assertion. Each probability reflects how certain an asser-
tion is, with 0 indicating that an assertion is definitely false and 1 indicating
that an assertion is definitely true.

Two Key Heuristics Enable Knowledge
Engineers to Acquire Knowledge

A domain expert is a person who has accumulated a great deal of skill
in handling problems in a particular area called the domain of exper-
tise. Knowledge engineering is the extraction of useful knowledge from
domain experts for use by computers. Often, albeit far from always, knowl-
edge engineers expect to cast the acquired knowledge in the form of rules
for rule-based systems.

168

Chapter

8 Rules, Substrates, and Cognitive Modeling

To some extent, knowledge engineering is an art, and some people
become more skilled at it than do others. Nevertheless, there are two key
heuristics that enable any knowledge engineer to do the job well.

The first of the key knowledge-engineering heuristics is the heuristic
of specific situations. According to this heuristic, it is dangerous to limit
inquiry to office interviews, asking only the general question, “How do you
do your job?” Instead, a knowledge engineer should go into the field to
watch domain experts proceed about their normal business, asking copious
questions about specific situations as those situations are witnessed.

Suppose, for example, that you are a knowledge engineer and that you
are working on new rules to be used by the BAGGER system introduced in
Chapter 7. If you ignore the heuristic of specific situations, you would have
just asked a few real grocery-store baggers to describe what they do. But
no matter how cooperative your domain experts are, they are unlikely to
be able to help you much unless you provide more evocative stimulation.
You might well learn nothing about what to do with, for example, eggs.
On the other hand, if you adhere to the heuristic of specific situations,
you would get yourself into a grocery store so as to watch baggers handle
specific situations, like the one shown in figure 8.3, asking questions like,
“Do you always put the eggs on top?”

The second of the key knowledge-engineering heuristics is the heuristic
of situation comparison. The idea is to ask a domain expert for clarifica-
tion whenever the domain expert’s behavior varies in situations that look
identical to the knowledge engineer. The purpose is to help the knowledge
engineer to acquire a vocabulary that is sufficiently rich to support the
necessary acquisition of knowledge.

Again, if you were the knowledge engineer charged with acquiring the
knowledge needed to support BAGGER, you would need to understand the
important characteristics of groceries from the bagging perspective. Not-
ing, for example, that a real bagger handles the two items in figure 8.4
differently, you would ask why, whereupon the bagger would say some-
thing about frozen food, thus signaling that frozen is a word that should
be in BAGGER's vocabulary.

Note that ideas for extracting knowledge for computers also apply when
your motive is to extract knowledge for your own use. Accordingly, the two
key heuristics for knowledge engineering deserve powerful-idea status:

To learn from an expert,

> Ask about specific situations to learn the expert’s general knowl-
edge.

> Ask about situation pairs that look identical, but that are handled
differently, so that you can learn the expert’s vocabulary.

Two Key Heuristics Enable Knowledge Engineers to Acquire Knowledge

169

Figure 8.3 Knowledge
engineers generally start their
work by asking domain experts
a few general questions about
what experts do. Eventually,
most knowledge-engineering
jobs require knowledge
engineers to use the heuristic
of specific situations, watching
domain experts at work on

concrete examples.
T

Figure 8.4 Knowledge
engineers often ask why
similar-looking situations are
different, thus building essential
vocabulary via the heuristic of
situation comparison. Here, the
domain expert will note that the
essential difference is that one

item is frozen.
|

Frozen Peas

170 Chapter 8 Rules, Substrates, and Cognitive Modeling

Figure 8.5 The rules in a
rule-based deduction system
form natural groups according
to the conclusions expressed in

their consequents.
(e

All rules
Rules about class Rules about order Rules about species
21,22,23, 24 Z5, 26, 27,28 29, 210, Z11, 212,
/ \ \‘ \213,214,215
Rules about Rules about Rules about Rules about
mammals birds carnivores ungulates
Z1, 22 Z3,24 Z5, 26 77,28

Acquisition Modules Assist Knowledge Transfer

When you represent knowledge using if-then rules, you lose flexibility and
power, but you gain the opportunity to add interesting capabilities to your
basic problem-solving apparatus. To add a question-answering superpro-
cedure, for example, you need to deal with only rules and rule histories.

Another relatively easy capability to add is a rule-transfer superproce-
dure that helps knowledge engineers to make new rules.

Suppose, for example, that you are a knowledge engineer and that you
are working on new rules to be used by the ZOOKEEPER system introduced
in Chapter 7. Further suppose that you have determined that another rule
is needed, one that captures the idea that an animal is a carnivore if it is
seen stalking another animal.

The knowledge engineer therefore proposes the following new rule:

Z16a If 7z stalks a different kind of animal
then %z is a carnivore

There is evidence an antecedent is missing, however. When compared with
the other rules that conclude that an animal is a carnivore, this proposed
rule lacks an antecedent requiring that the animal is a mammal. Noting
this lack, it makes sense to ask whether the omission is intended. The
answer would lead to a refined rule:

Z16b If 2z is a mammal
¢z stalks a different kind of animal
then %z is a carnivore

Suppose Robbie creates PROCRUSTES, a knowledge-acquisition assistant,
to automate the search for omissions.

To encourage knowledge engineers to construct new rules that look like
old ones, PROCRUSTES makes heavy use of natural rule groups. It forms
these natural rule groups by filtering all existing rules down through a tree
like the one shown in figure 8.5.

Rule-Based Systems Can Behave Like Idiot Savants 171

For each rule group, PROCRUSTES forms a typical member by combin-
ing all antecedents and all consequents that occur in, say, 30 percent of the
group’s rules. For the group of those rules that conclude that an animal is
a carnivore, there is one such antecedent (that the animal is a mammal),
and one such consequent (that the animal is a carnivore).

Typical-carnivore
If the animal is a mammal
then it is a carnivore

All PROCRUSTES needs to do, then, is to compare proposed rules with the
typical rules of the applicable rule groups, asking the knowledge engineer
for a decision whenever something in a typical rule is not in a proposed
rule. In the example, the carnivore rule group is applicable. Because the
only antecedent of the typical carnivore rule is missing from the proposed
rule, Z16a, PROCRUSTES would suggest that antecedent, leading to the
more reliable rule, Z16b.

Thus, procedures such as PROCRUSTES can do a lot by helping you to
transfer rulelike knowledge from knowledge engineers to rule-based systems.
In Chapter 17, you learn about another procedure that can do even more
by directly producing rulelike knowledge from precedents and exercises.

Rule Interactions Can Be Troublesome

It would seem that rule-based systems allow knowledge to be tossed into
systems homogeneously and incrementally without concern for relating new
knowledge to old. Evidently, rule-based systems should permit knowledge
engineers to focus their attention on the rules, letting the rule chainer
control rule interactions.

There are problems about which to worry, however. One particu-
lar problem is that the advantage of bequeathing control becomes the
disadvantage of losing control, as King Lear failed to foresee.

Rule-Based Systems Can Behave Like Idiot Savants

Rule-based systems do some things so well, they can be said to be savants
with respect to those things:

m Rule-based systems solve many problems.
® Rule-based systems answer simple questions about how they reach their
conclusions.

Still, basic rule-based systems lack many of the characteristics of domain
experts, qualifying them to be idiot savants:

m They do not reason on multiple levels.

They do not use constraint-exposing models.

They do not look at problems from different perspectives.
They do not know how and when to break their own rules.

172

Chapter

8 Rules, Substrates, and Cognitive Modeling

® They do not have access to the reasoning behind their rules.

In principle, there is nothing to prevent building more humanlike systems
using rules, because rules can be used as a sort of programming language.
When used as a programming language, however, rules have to be measured
against alternative programming languages; when so measured, rules have
little to offer.

RULE-BASED SYSTEMS VIEWED AS
MODELS FOR HUMAN PROBLEM
SOLVING

Do computational theories of problem solving have promise as psycholog-
ical models of human reasoning? The answer is yes, at least to many
computationally-oriented psychologists who try to understand ordinary hu-
man activity using metaphors shared with researchers who concentrate on
making computers smarter.

Rule-Based Systems Can Model Some Human Problem Solving

In the human-modeling world, if-then rules are called productions and
rule-based systems are called production systems. Hard-core rule-based-
system enthusiasts believe that human thinking involves productions that
are triggered by items in short-term memory. They also believe that
short-term memory is inhabited by only a few simple symbolic chunks,
whereas long-term memory holds all the productions. Specific combi-
nations of the short-term memory items trigger the long-term memory’s
productions.

Protocol Analysis Produces Production-System Conjectures

To learn how people solve problems, information-processing psychologists
pore over transcripts of subjects talking their way through problems. These
transcripts are called protocols. The psychologists who study protocols
generally think in terms of two important concepts:

@ The state of knowledge is what the subject knows. Each time the
subject acquires knowledge through his senses, makes a deduction, or
forgets something, the state of knowledge changes.

m The problem-behavior graph is a trace of a subject moving through
states of knowledge as he solves a problem.

The problem-behavior graph is important because it helps you to unravel
characteristics of the subject who produces it. By analyzing the way one
state of knowledge becomes another, you can draw inferences about the
productions that cause those state changes. Consider, for example, the
following protocol fragment:

SOAR Searches Problem Spaces 173

A Protocol for Robbie
Let’s see, I want to identify this animal, I wonder if it’s a cheetah—
I have nothing to go on yet, so I think I'll start by looking into
the possibility that it is a carnivore—I had better check to see if
it is a mammal first—yes, that is OK—hair—it doesn’t seem to
be eating anything so I can’t tell if it is a carnivore—but oh, yes,
it has pointed teeth, claws, and forward-pointing eyes, so it is a
carnivore all right—now where was I—it’s a carnivore, and I also
see that it has a tawny color and dark spots—surely it must be a
cheetah!

It would seem that assertions accumulate in the following order: hair, mam-
mal, pointed teeth, claws, forward-pointing eyes, carnivore, tawny color,
dark spots, and cheetah. From observations such as these, the information-
processing psychologists would probably deduce that Robbie’s production
system is a backward-chaining one with rules much like those used in the
ZOOKEEPER examples.

SOAR Models Human Problem Solving, Maybe

In artificial intelligence, an architecture is an integrated collection of rep-
resentations and methods that is said to handle a specified class of problems
or to model insightfully a form of natural intelligence.

SoAR! is an elaborate, production-centered architecture that was de-
veloped both to explain human problem solving and to support the im-
plementation of applied systems. SOAR features a long-term memory for
productions and a short-term memory for items that trigger the produc-
tions.

In the rest of this section, you learn about SOAR’s key architectural
features, but you learn only a bit, as a full treatment would require a book,
not a section of a chapter.

SOAR Searches Problem Spaces

First, SOAR developers are committed to the idea that all problems can be
formulated in terms of a search through a problem space, a net consist-
ing of situation-describing problem states. SOAR starts from an initial
situation, the current state, in the expectation that it will arrive at an
identifiable goal state eventually. One such net is shown in figure 8.6.
SOAR moves from problem state to problem state in three-step cycles:
First, SOAR establishes a preference net, a net in which preference labels
and preference links describe the merits of various choices. Second, SOAR
translates the preference labels and preference links into dominance rela-
tions among the states. Third, SOAR uses the dominance relations to select

t«“SOAR” is an acronym for state, operator, and result, which together constitute
one basic search step in SOAR. “SOAR” is an obscure acronym, however; many
SOAR researchers cannot tell you its derivation.

174 Chapter 8 Rules, Substrates, and Cognitive Modeling

Figure 8.6 A problem space.
At this point in the search, there
are no links to indicate which
problem states are considered

neighbors.
|

Current state

()

Goal state

O

Figure 8.7 A preference net
uses preference labels and
preference links to describe the
absolute and relative merits of a

state and its neighbors.
|

Acceptable

better

° Acceptable

Current state

Worst
Acceptable

Goal state

O

SOAR Uses an Automatic Preference Analyzer 175

the next current state. Then, SOAR repeats the cycle, placing new links,
determining new dominance relations, and updating the current state, until
SOAR reaches the goal state.

One example of a preference net is shown in figure 8.7. State C is
the current state. The links labeled acceptable, worst, and better carry
preference information. More generally, the links that can appear in a
preference net are given in the following specification:

A preference net is a representation
That is a state space
In which

> Absolute preferences are identified by Is links that connect
states to acceptable, rejected, best, and worst nodes.

> Relative preferences are identified by better, worse, and
indifferent links that connect states to each other.

SOAR Uses an Automatic Preference Analyzer

To use preference labels and links, SOAR uses an automatic preference
analyzer—one that resolves inconsistencies caused by rules with limited
vision.

To see how SOAR’s automatic preference analyzer works, consider the
nodes and links shown in figure 8.7. SOAR’s automatic preference analyzer
first collects problem states C, A, and D, as those are labeled acceptable.
Next, SOAR establishes that state D dominates state A because there is a
better link from state D to state A. Then, SOAR establishes that state C
is dominated by both of the other states because state C is labeled worst
and it does not dominate any other state.

At this point, all dominated states are rejected, leaving only state D.
Consequently, SOAR selects state D to be the next problem state, leav-
ing SOAR ready to start another cycle of preference marking, preference
analysis, and state selection.

While discovering new problem states and labeling known problem
states with preference information, SOAR uses no conflict-resolution strat-
egy to decide which triggered rule should fire. Instead, SOAR fires all trig-
gered rules and decides what to do by looking at what they all do, rather
than by using some rigidly prescribed, result-ignorant conflict-resolution
strategy that suppresses all but one of the triggered rules.

On a higher level, in addition to determining which new problem state
should replace the current state, SOAR’s automatic preference analyzer
looks for opportunities to reformulate the problem in terms of a better set
of problem states in which to search for the goal, thereby replacing the
current problem space. On a lower level, SOAR’s automatic preference

176

Chapter

8 Rules, Substrates, and Cognitive Modeling

analyzer looks for opportunities to replace the method, called the current
operator, that discovers new problem states.

Finally, whenever SOAR gets stuck—finding no unambiguous way to
replace any current problem space, problem state, or operator—SOAR’s au-
tomatic preference analyzer announces an impasse, and SOAR’s universal
subgoaling mechanism creates a subgoal to resolve the impasse. SOAR
users are expected to anticipate various sorts of problem-specific impasses
s0 as to provide the appropriate productions for setting up subgoal-handling
problem spaces, problem-space-dependent problem states, and problem-
state—dependent operators.

In summary, the detailed behavior of SOAR’s automatic preference an-
alyzer is dictated by the following procedure:

To determine the preferred state using SOAR’s automatic
preference analyzer,

> Collect all the states that are labeled acceptable.

> Discard all the acceptable states that are also labeled
rejected.

> Determine dominance relations as follows:

> State A dominates state B if there is a better link from
A to B but no better link from B to A.

> State A dominates state B if there is a worse link from
B to A but no worse link from A to B.

> A state labeled best, and not dominated by another
state, dominates all other states.

> A state labeled worst, which does not dominate any
other state, is dominated by all other states.

> Discard all dominated states.

> Select the next state from among those remaining as fol-
lows:

> If only one state remains, select it.

> Otherwise, if no states remain, select the current state,
unless it is marked rejected.

> Otherwise, if all the remaining states are connected by
indifferent links,

> If the current state is one of the remaining states,
keep it.

> Otherwise, select a state at random.

> Otherwise, announce an impasse.

Background 177

SUMMARY

The simplicity of rule-based deduction systems enables you to build
extremely useful modules on top of a basic chaining procedure.
Explanation modules explain reasoning by using a goal tree to answer
how and why questions. Probability modules help you to determine
answer reliability. Acquisition modules assist knowledge engineers in
knowledge transfer from a human expert to a collection of rules.
Variable-precision reasoning systems exhibit variable reasoning styles,
ranging from quick and superficial to slow and careful.

Two key heuristics enable knowledge engineers to acquire knowledge
from human experts. One is to work with specific situations; another
is to ask about situation pairs that look identical, but are handled
differently.

Rule-based systems can behave like idiot savants. They do certain
tasks well, but they do not reason on multiple levels, they do not use
constraint-exposing models, they do not look at problems from different
perspectives, they do not know how and when to break their own rules,
and they do not have access to the reasoning behind their rules.
Rule-based systems can model some human problem solving. SOAR,
the most highly developed rule-based model of human problem solving,
uses an automatic preference analyzer to determine what to do, instead
of using a fixed conflict-resolution strategy.

BACKGROUND

The discussion of reasoning styles is based on the work of Ryszard S.
Michalski and Patrick H. Winston [1986]. The discussion of PROCRUSTES
is based on the work of Randall Davis [1976].

A system for propagating certainties is discussed in Chapter 11.
SoAR was developed by Allen Newell and his students [Laird et al. 1987;

Newell 1990].

Frames and
Inheritance

In this chapter, you learn about frames, slots, and slot values, and you
learn about tnheritance, a powerful problem-solving method that makes it
possible to know a great deal about the slot values in instances by virtue of
knowing about the slot values in the classes to which the instances belong.

With basic frame-representation ideas in hand, you learn that frames
can capture a great deal of commonsense knowledge, informing you not only
about what assumptions to make, but also about for what information
to look and how to look for that information. You learn that much of
this knowledge is often embedded in when-constructed procedures, when-
requested procedures, when-read procedures, when-written procedures, and
with-respect-to procedures.

By way of illustration, you see how to use frames to capture the general
properties of various kinds of dwarfs, and you see how to use frames to
capture the properties of various kinds of newspaper stories.

Once you have finished this chapter, you will understand that frames
can capture a great deal of commonsense knowledge, including knowledge
about various sorts of objects ranging from individuals to events. You will
also know how the CLOS inheritance procedure determines a precedence
ordering among multiple classes.

FRAMES, INDIVIDUALS, AND INHERITANCE

In this section, you learn about frames and their relation to semantic nets.
In particular, you learn how to capture general knowledge that holds for

179

180

Chapter

9 Frames and Inheritance

most of the individuals in a class. This capability enables you to make use
of the following general knowledge about fairy-tale dwarfs:

Fairy-tale competitors and gourmands are fairy-tale dwarfs.
Most fairy-tale dwarfs are fat.

Most fairy-tale dwarfs’ appetites are small.

Most fairy-tale gourmands’ appetites are huge.

Most fairy-tale competitors are thin.

You also learn the details of one particularly good mechanism for deciding
which general knowledge about classes to transfer to individuals.

Frames Contain Slots and Slot Values

At this point, it is convenient to introduce a few terms that make it easier
to think about semantic nets at a level slightly higher than the lowest level,
where there are just nodes and links.

As shown in figure 9.1, each node and the links that emanate from it
can be collected together and called a frame. Graphically, frames may
be shown in an alternate, rectangle-and-slot notation. Each frame’s name
is the same as the name of the node on which the frame is based. The
names attached to the slots are the names of the links emanating from
that frame’s node. Accordingly, you can talk about a slot, rather than
about a link that emanates from a node. Similarly, you can talk about
slot values rather than about the destinations of links emanating from
a node. Thus, the language of frames, slots, and slot values is sometimes
more concise, and hence clearer, than is the language of nodes and links,
although both describe the same concepts.

Frames may Describe Instances or Classes

Many frames describe individual things, such as Grumpy, an individual
dwarf. These frames are called instance frames or instances. Other
frames describe entire classes, such as the dwarf class. These frames are
called class frames or classes.

As soon as you know the class to which an instance belongs, you gen-
erally assume a lot. Unless you know you are dealing with an exception,
you assume, for example, that dwarfs are fat.

A special slot, the Is-a slot, short for is-a-member-of-the-class, ties
instances to the classes that they are members of. In figure 9.2, for example,
a dwarf named Blimpy is identified as a member of the Managers class.

Another special slot, the Ako slot, short for a-kind-of, ties classes to-
gether. The Managers class is a subclass of the Competitors class, for
example. The Managers class is also a direct subclass of the Competi-
tors class because there is an Ako slot in the Managers class that is filled
with the Competitors class. The Managers class is just a subclass of the
Dwarfs class, however, because you have to traverse more than one Ako
slot to get from the Managers class to the Dwarfs class. Symmetrically,

Frames may Describe Instances or Classes

181

Figure 9.1 A semantic net
can be viewed either as a
collection of nodes and links

or as a collection of frames.

At the top, a semantic net is
viewed as a collection of nodes
and links. In the middle, the
same semantic net is divided
into chunks, each of which
consists of a node and the links
that emanate from it. Next,

at the bottom, each chunk is
shown as a frame with slots
and slot values. As the Grumpy
frame illustrates, slot values
may be shown as frame names

or as links connected to frames.
.|

likes
Happy
[—— 1
_____ N Iy
| |
| |
likes | | 1
1 Happy
| |
_________ |
Managers
Grumpy Happy

Is-a ®
Likes Happy

182 Chapter 9 Frames and Inheritance

Figure 9.2 A simple class
hierarchy. Blimpy is a member

of the Managers class, which —’j
is a direct subclass of the Everything
Competitors class and a N ako
subclass of the Dwarfs class.
Every class is considered to Dwarts
be, ultimately, a subclass of the ako
Everything class. .
e Competitors
ako
Managers
is-a

Blimpy

the Competitors class is said to be a direct superclass of the Managers
class, and the Dwarfs class is said to be a superclass of the Managers
class.

Note that it is convenient to draw class hierarchies with Is-a and Ako
links connecting frames that are actually connected via values in Is-a and
Ako slots. Thus, the vocabulary of nodes and links is often mixed with the
vocabulary of frames and slots.

Frames Have Access Procedures

To make and manipulate instances and classes, you need access procedures,
just as you do for any representation. In figure 9.3, the class constructor
makes a Manager frame that has one direct superclass, the Competitors
class, which appears in the Ako slot. In general, the class constructor
can make class frames that contain other slots and more than one direct
superclass.

An instance constructor makes instance frames. Its input consists of
the name of the class to which the instance belongs; its output is an instance
that belongs to those classes. The new instance is connected automatically
to the class frames via an Is-a slot in the new instance.

A slot writer installs slot values. Its input is a frame, the name of a
slot, and a value to be installed. Finally, a slot reader retrieves slot values.
Its input is a frame and the name of a slot; its output is the corresponding
slot value.

183

Figure 9.3 Instance frames
and class frames are data types
that are made and accessed
with various constructors,

writers, and readers.
- |

Construct a class frame:

Managers

Ako

Write Happy into the Likes slot:

Grumpy

Is-a Manager

Likes Happy

Construct an instance frame: Happy
Grumpy Read the value in the Likes slot:
Is-a Grumpy

lkes [] Is-a
Likes Happy

Happy

Inheritance Enables When-Constructed
Procedures to Move Default Slot Values from
Classes to Instances

The slots in an instance are determined by that instance’s superclasses. If
a superclass has a slot, then the instance inherits that slot.

Sometimes, slot values are specified after an instance is constructed.
After Blimpy is constructed, for example, you can indicate that Blimpy is
smart by inserting the value Smart in Blimpy’s Intelligence slot.

Alternatively, the slot values of an instance may be specified, somehow,
by the classes of which the instance is a member. It might be, for example,
that Dwarfs are fat in the absence of contrary information; also it might be
that Competitors are thin, again in the absence of contrary information.

By writing down, in one place, the knowledge that generally holds for
individuals of that class, you benefit from the following characteristics of
shared, centrally located knowledge:

Shared knowledge, located centrally, is

> Easier to construct when you write it down
> Easier to correct when you make a mistake
> Easier to keep up to date as times change

> Easier to distribute because it can be distributed auto-
matically

One way to accomplish knowledge sharing is to use when-constructed
procedures associated with the classes of which the instance is a member.
Here is an example that supplies a value for the physique slot of individual
dwarfs:

184

Chapter

9 Frames and Inheritance

To fill the Physique slot when a new Dwarf is constructed,
> Write Fat in the slot.

The expectations established by when-constructed procedures are called
defaults.

In the simplest class hierarchies, no more than one when-constructed
procedure supplies a default for any particular slot. Often, however, several
when-constructed procedures, each specialized to a different class, sup-
ply default values for the same slot. Here, for example, a second when-
constructed procedure provides a default value for the Physique slot of
individual Competitors:

To fill the Physique slot when a new Competitor is con-
structed,

> Write Thin in the slot.

Whenever an individual is both a Competitor and Dwarf, both procedures
compete to supply the default value. Of course, you could specify an inher-
itance procedure that allows multiple procedures to supply defaults, but
the usual practice is to allow just one procedure.

How can you decide which when-constructed procedure is the winner?
First, you learn about the special case in which no individual has more
than one Is-a link and no class has more than one Ako link. Once this
foundation is in place, you learn about more complicated hierarchies in
which individuals and class have multiple inheritance links.

One way to decide which when-constructed procedure to use, albeit a
way limited to single-link class hierarchies, is to think of classes themselves
as places where procedures can be attached. One of the sample procedures,
because it deals with new Dwarfs, is attached to the Dwarf class; the other
is attached to the Competitors class. That way, you can find both by a
search up from the new instance through Is-a links and Ako links.

Because each class in the class hierarchy in the example has only one
exiting Ako link, it is easy to form an ordered list consisting of Blimpy
and the classes to which Blimpy belongs. This ordered list is called the
class-precedence list:

Blimpy

Managers class

Competitors class procedure stored here
Dwarfs class — procedure stored here
Everything class

A procedure that is specialized to one of the classes on the class-precedence
list is said to be applicable.

A Class Should Appear Before All Its Superclasses 185

Suppose, for example, that you have just constructed Blimpy. You have
Blimpy’s class-precedence list, which supplies two procedures for computing
values for the Physique slot. The procedure attached to the Competitor’s
class says that Blimpy is Thin and the procedure attached to the Dwarf
class says that Blimpy is Fat. This kind of ambiguity is always resolved
in favor of the most specific applicable procedure—the one that is encoun-
tered first on the class-precedence list. In the example, as shown by the
class-precedence list, the first of the procedure-supplying classes encoun-
tered is the Competitors class, so the procedure attached there is the one
that determines Blimpy’s physique when Blimpy is constructed. Evidently,
Blimpy is Thin.

A Class Should Appear Before All Its Superclasses

When there is more than one Is-a link above an instance or more than one
Ako link above a class, then the class hierarchy is said to branch.t Because
branching class hierarchies are more difficult to handle, yet are ubiquitous
in intelligent systems, the rest of this section is devoted to explaining the
issues involved, and to presenting a procedure that deals with those issues.

As an illustration, consider the class hierarchy shown in figure 9.4.
Suppose that there are two procedures for computing Appetite:

To fill the Appetite slot when a new Dwarf is constructed,
> Write Small in the slot.

To fill the Appetite slot when a new Gourmand is con-
structed,

> Write Huge in the slot.

Because the class hierarchy branches, you must decide how to flatten the
class hierarchy into an ordered class-precedence list.

One choice is to use depth-first search. Depth-first search makes sense
because the standard convention is to assume that information from specific
classes should override information from more general classes. Left-to-right
search makes sense too, but only because you need some way to specify the
priority of each direct superclass, and the standard convention is to specify

1 Generally, the treatment of frames in this chapter follows the conventions of the
Common Lisp Object System, also known as CLOS. However, in contrast to
the conventions of CLOS, multiple Is-a connections are allowed—CLOS forbids
them for the sake of efficient implementation. There is no loss of generality in
CLOS, however, because an instance can be attached to a class that is wholly
dedicated to that instance and that has multiple Ako connections to the desired
superclasses.

186 Chapter 9 Frames and Inheritance

Figure 9.4 Another class
hierarchy. Because Blimpy
belongs to both the Gourmands Everything
class and to the Diarists class,
as well as the Managers class,
the class hierarchy branches

upward. Because the Dwarfs Dwarfs
class has three subclasses—
Competitors, Gourmands and
Diarists—the class hierarchy ako ako ako
branches downward as well.

ako

Competitors

ako

Diarists

Managers Gourmands

is-a is-a

Blimpy

priority through the left-to-right superclass order provided to the class-
constructor procedure.

Note, however, that you must modify depth-first search slightly, be-
cause you want to include all nodes exactly once on the class-precedence
list. To perform exhaustive depth-first search, you explore all paths,
depth first, until each path reaches either a leaf node or a previously-
encountered node.

To search the class hierarchy shown in figure 9.4, using exhaustive
depth-first search, you first follow the left branch at each node encoun-
tered; the resulting path includes Blimpy, Managers, Competitors, Dwarfs,
and Everything. Then, you follow Blimpy’s middle branch to Gourmands;
the resulting path terminates at Gourmands, however, because you have
already encountered the Dwarfs node. Finally, you follow Blimpy’s right
branch to Diarists, where you terminate the path.

Thus, exhaustive depth-first, left-to-right search produces the following
class-precedence list for Blimpy:

A Class’s Direct Superclasses Should Appear in Order 187

Blimpy

Managers class

Competitors class

Dwarfs class « procedure stored here
Everything class

Gourmands class «— procedure stored here
Diarists class

You can see that the first Appetite-computing when-constructed procedure
encountered for Blimpy is the one attached to the Dwarfs class—the one
that would indicate that Blimpy’s appetite is small. This conclusion seems
at odds with intuition, however, because the Gourmands class is a subclass
of the Dwarfs class. Surely a class should supply more specific procedures
than any of its superclasses. Rephrasing, you have a rule:

m Each class should appear on class-precedence lists before any of its
superclasses.

To keep a class’s superclasses from appearing before that class, you can
modify depth-first, left-to-right search by adding the up-to-join proviso.
The up-to-join proviso stipulates that any class that is encountered more
than once during the depth-first, left-to-right search is ignored until that
class is encountered for the last time.

Using this approach, the construction of Blimpy’s class-precedence list
proceeds as before until the Competitors class is added and the Dwarfs
class is encountered. Because there are three paths from Blimpy to the
Dwarfs class, the Dwarfs class is ignored the first and second times it is
encountered. Consequently, the Gourmands class is the next one added to
the class-precedence list, followed by the Diarists class. Then, the Dwarfs
class is encountered for the third and final time, whereupon it is noted
for the first time, enabling it and the Everything class to be added to the
class-precedence list. Thus, the Gourmands class appears before the Dwarf
class, as desired:

Blimpy

Managers class

Competitors class

Gourmands class « procedure stored here
Diarists class

Dwarfs class « procedure stored here
Everything class

Now the first appetite-computing procedure encountered is the one that
says Blimpy’s appetite is huge.
A Class’s Direct Superclasses Should Appear in Order

The depth-first, left-to-right, up-to-join procedure for computing class-
precedence lists still leaves something to be desired. Consider, for example,

188 Chapter 9 Frames and Inheritance

Everything
ako
Dwarfs
ako
ako K
Eccentrics ako ako ako
rTeachers Athletes Endomorphs
ako | ako Programmers
ako /1 ako | ako ako
‘ Professors ‘ Hackers Weightlifters Shotputters
is-a is-a is-a is-a
Crazy Jacque
Figure 9.5 Another the situation involving two other dwarfs, Crazy and Jacque, shown in fig-
class hierarchy, with ure 9.5.
Is-a and Ako links The depth-first, left-to-right, up-to-join approach produces the follow-
shown. The depth- ing class-precedence lists for Crazy and Jacque:
first, left-to-right, Crazy Jacque
up-to-join approa(?h Professors class Weightlifters class
produces appropngte Eccentrics class Athletes class
class-precedence lists Teachers class Shotputters class
for both Crazy and Hackers class Endomorphs class
Jacque. Programmers class Dwarfs class
Dwarfs class Everything class

Everything class

Nothing is amiss. No class appears after any of its own superclasses. More-
over, each class’s direct superclasses appear in their given left-to-right or-
der: The Professors class appears before the Hackers class; the Eccentrics
class appears before the Teachers class; the Weightlifters class appears

A Class’s Direct Superclasses Should Appear in Order 189

Everything
ako
Dwarfs
ako
ako k
Eccentrics ako &%
ako
Teachers Athletes Endomorphs
Programmers ako
ako ako / is-a ako ako
akO ako
Professors Hackers Weightlifters Shotputters
is-a is-a
is-a \ is-a /)
Crazy Jacque

Figure 9.6 Still
another class
hierarchy, with one
new Is-a link and two
new Ako links shown
by thick lines. This
time, the depth-first,
left-to-right, up-to-join
approach does not
produce appropriate
class-precedence lists
for either Crazy or

Jacque.
|

before the Shotputters class; and the Athletes class appears before the
Endomorphs class.

But suppose one Is-a link and two Ako links are added, as in figure 9.6.
Now the class-precedence lists for Crazy and Jacque are different:

Jacque
Weightlifters class
Shotputters class
Endomorphs class
Athletes class
Dwarfs class
Everything class

Crazy

Professors class
Teachers class
Hackers class
Eccentrics class
Programmers class
Dwarfs class
Everything class

Again, no class appears after any of its own superclasses, but the Eccentrics
and Teachers classes—direct superclasses of the Professors class—are now
out of the left-to-right order prescribed by the Ako links exiting from the
Professors class. Similarly, the Athletes and Endomorphs classes—direct

190

Chapter

9 Frames and Inheritance

superclasses of the Weightlifters class—are now out of the left-to-right or-
der prescribed by the Ako links exiting from the Weightlifters class. In
both instances, the order changes are caused by the addition of Ako links
connected to other classes. These order changes are bad because left-to-
right order, by convention, is supposed to indicate priority. You need a still
better way to compute class-precedence lists that conforms to the following
rule:

m Each direct superclass of a given class should appear on class-precedence
lists before any other direct superclass that is to its right.

The Topological-Sorting Procedure Keeps
Classes in Proper Order

The topological-sorting procedure, to be described in this section, is
definitely more complicated than the depth-first, left-to-right, up-to-join
procedure. The extra complexity is worthwhile, however, because the
topological-sorting procedure keeps direct superclasses in order on class-
precedence lists. Thus, you know the order of a class’s direct superclasses
on the class’s class-precedence list as soon as you know how the direct su-
perclasses are ordered: You do not need to know the entire structure of the
class hierarchy.

Before you learn the details of the topological sorting procedure, how-
ever, you will find it helpful to see what happens when a path through
a class hierarchy is expressed as a list of adjacent pairs. For example,
the simple, nonbranching class hierarchy in figure 9.2 can be represented
as three pairs of adjacent classes, Managers—Competitors, Competitors—
Dwarfs, and Dwarfs—Everything.

Note that the order in which the pairs appear can be scrambled without
hindering your ability to reconstruct the original path. First, you look for
a class that occupies the left side of a pair but that does not occupy the
right side of any other pair. There will always be such a class; once you
find it, you need only to add it to the end of a list, to strike out the pair
in which it appears, and to repeat.

Next consider the classes to which Blimpy belongs, as shown in fig-
ure 9.4. Blimpy is not just a Manager; he is also a Gourmand and a
Diarist, in that left-to-right order. Now you can express that left-to-right
order as a list of adjacent pairs, just as you previously expressed a path
up a class hierarchy as a set of left-to-right pairs. This time, you get
Managers-Gourmands and Gourmands-Diarists.

As before, you can scramble the order of the pairs without hindering
your ability to reconstruct the original left-to-right order. Again, all you
need to do is to look for a class that occupies the left side of a pair but
that does not occupy the right side of a pair. Once you find it, you add it
to the end of a list, strike out the pair in which it appears, and repeat.

The Topological-Sorting Procedure Keeps Classes in Proper Order 191

Thus, you can reconstruct either a nonbranching path up a class hi-
erarchy or the left-to-right order across a set of direct superclasses from
appropriately constructed lists of pairs. In one instance, you ensure that
no class is listed before any of its superclasses; in the other instance, you
ensure that the left-to-right order of direct superclasses is preserved.

Now you already understand the key idea behind the topological-sorting
procedure; all that remains is to learn about a clever way of constructing
a list of pairs such that both the upward and rightward constraints are
expressed.

The first step in forming a class-precedence list for an instance using
topological sorting is to form an exhaustive list consisting of the instance
itself and all classes that can be reached via Is-a and Ako links from that
instance. For Crazy, for example, this list contains Crazy, Professors, Ec-
centrics, Dwarfs, Everything, Teachers, Hackers, and Programmers. Note
that this list constitutes raw material for building the class precedence list;
it is not the class-precedence list itself.

The next step is to form a list of pairs for the one instance and the
many classes on the raw-materials list. To make discussion easier, let us
refer to both the instance and the classes on the raw-materials list as items.

To form a list of pairs for an item on the raw-materials list, think of
passing a fish hook through the item and that item’s direct superclasses, as
shown in figure 9.7. Next, walk along the fish hook from barb to eyelet while
making a list of pairs of adjacent items encountered on the hook. Following
the fish hook for Crazy produces Crazy—Professors and Professors—Hackers.
Following the fish hook for Professors produce Professors—Eccentrics and
Eccentrics—Teachers; following the fish hook for Hackers produce Hackers—
Eccentrics and Eccentrics-Programmers.

Following fish hooks for all the items on the raw materials list for Crazy
yields the following pairs:

Node Fish-hook pairs

Crazy Crazy—Professors, Professors—Hackers
Professors Professors—Eccentrics, Eccentrics—Teachers
Eccentrics Eccentrics—Dwarfs

Dwarfs Dwarfs—Everything

Teachers Teachers—Dwarfs

Hackers Hackers—Eccentrics, Eccentrics—Programmers
Programmers Programmers-Dwarfs

Everything Everything

The next step is to look for an item that occupies the left side of one or
more pairs, but does not occupy the right side of any pair. To make it easier
to refer to such an item, let us say that it is exposed. In our example,
Crazy is exposed by virtue of the pair Crazy—Professors and the absence

192 Chapter 9 Frames and Inheritance

of any pair with Crazy on the right side.
Whenever you find an exposed item, you add it to the end of the class-
precedence list and strike out all pairs in which it occurs. For the example,

this means starting the class-precedence list with Crazy and striking out
Crazy-Professors:

Node Fish-hook pairs

Crazy Cragy—Professors, Professors-Hackers
Professors Professors—Eccentrics, Eccentrics-Teachers
Eccentrics Eccentrics-Dwarfs

Dwarfs Dwarfs—Everything

Teachers Teachers—Dwarfs

Hackers Hackers—Eccentrics, Eccentrics-Programmers
Programmers Programmers—Dwarfs

Everything Everything

Class-precedence list: Crazy

Now, with the pair Crazy-Professors struck out, the Professors class is
exposed, leading to the next addition to the class-precedence list and to
the accompanying strike-out action:

Node Fish-hook pairs

Crazy Crasy—Professors, Professors—Hackers
Professors Professors—Eceentries, Eccentrics—Teachers
Eccentrics Eccentrics-Dwarfs

Dwarfs Dwarfs-Everything

Teachers Teachers—Dwarfs

Hackers Hackers—Eccentrics, Eccentrics—Programmers
Programmers Programmers-Dwarfs

Everything Everything

Class-precedence list: Crazy, Professors

Now the Hackers class is exposed, so you add Hackers and strike Hackers—
Eccentrics:

The Topological-Sorting Procedure Keeps Classes in Proper Order 193

Everything ®

“—bwarls—»
Dwarfs PY Dwarfs PY Dwartfs PY Dwarfs PY Dwarfs ®
A
Eccentrics > Teachers > rogrammers > Athletes EndomorphsL
Eccentrics Teachers PY Athletes Endomorphs ®
Professors > Weightlifters >
Eccentrics Programmers ® Athletes Endomorphs ®
Hackers > Shotputters >
Professors Hackers Weightlifters Shotputters Athletes ®

@ \
Crazy > (Jacque >

Figure 9.7 Fish hooks for Crazy, Jacque, and the classes reachable from them. These fish hooks yield lists of
class pairs that enable the computation of a class-precedence list via the topological-sorting procedure.

194 Chapter 9 Frames and Inheritance

Node Fish-hook pairs

Crazy Crazy—Professors, Professors—Hackers
Professors Professors—Eecentries, Eccentrics-Teachers
Eccentrics Eccentrics-Dwarfs

Dwarfs Dwarfs—Everything

Teachers Teachers-Dwarfs

Hackers Hackers—Eeeentries, Eccentrics—Programmers
Programmers Programmers—Dwarfs

Everything Everything

Class-precedence list: Crazy, Professors, Hackers

Now the Eccentrics class is exposed, so you add Eccentrics and strike
Eccentrics—Teachers, Eccentrics—Dwarfs, and Eccentrics-Programmers:

Node Fish-hook pairs
Crazy Crazy—Professers, Professors—Haekers
Professors Professors—Eecentries, Eecentries—Teachers
Eccentrics Eeeentries—Dwazfs
Dwarfs Dwarfs—Everything
Teachers Teachers—Dwarfs
Hackers Hackers—Eecentrics, Eceentrics—Programmers
Programmers Programmers-Dwarfs
Everything Everything
Class-precedence list Crazy
Professors
Hackers
Eccentrics

At this point, there are two exposed classes, Teachers and Programmers.
Accordingly, you need a way to break ties. One possible tie breaker—
one that tends to prevent erratic movement through the tree—is to select
the class that is a direct superclass of the lowest-precedence class on the
emerging class-precedence list.

In the example, however, neither the Teachers class nor the Program-
mers class is a direct superclass of the lowest-precedence class on the class-
precedence list, the Eccentrics class.

Generalizing a bit, you move from lowest precedence to highest prece-
dence on the emerging class-precedence list, encountering the Hackers class.
Because the Programmers class is a direct superclass of the Hackers class,
but the Teachers class is not, the tie is broken and you can proceed:

The Topological-Sorting Procedure Keeps Classes in Proper Order 195

Node Fish-hook pairs
Crazy Cragy-Professors, Professors—Hackers
Professors Professors—Eecentrics, Eccentrics—Teachers
Eccentrics Eecentrics—Dwarfs
Dwarfs Dwarfs—Everything
Teachers Teachers—Dwarfs
Hackers Hackers~Eccentries, Eccentrics—Programmers
Programmers Programmers-Dwarfs
Everything Everything
Class-precedence list Crazy
Professors
Hackers
Eccentrics
Programmers

From here on, progress is uneventful, with the following result:

Node Fish-hook pairs
Crazy Crazy—Professors, Professors—Haekers
Professors Professors—Eecentrics, Eccentrics—Teachers
Eccentrics Eeccentries—Dwarfs
Dwarfs Dwarfe-Everything
Teachers Teachers—Dwarfs
Hackers Haeckers—Eccentrics, Eccentrics—Programmers
Programmers Programmers—Dwarfs
Everything Everything
Class-precedence list Crazy
Professors
Hackers +— procedure to be stored here
Eccentrics — procedure to be stored here
Programmers
Teachers
Dwarfs
Everything

Now, suppose you create two personality-determining when-constructed
procedures, one for Hackers and one for Eccentrics. The when-constructed
procedure that is specialized to the Hacker class indicates that hackers are

shy:

196

Chapter

9 Frames and Inheritance

To fill the Personality slot when a new Hacker is con-
structed,

> Write Shy in the slot.

On the other hand, the when-constructed procedure that is specialized to
the Eccentrics class indicates that eccentrics are weird:

To fill the Personality slot when a new Eccentric is con-
structed,

> Write Weird in the slot.

Now suppose that the Crazy instance is constructed after these when-
constructed procedures are defined. Is Crazy Shy or Weird? Evidently,
Crazy is Shy, because Hackers appears before Eccentrics on Crazy’s class-
precedence list.

In summary, when new individuals are created, when-constructed pro-
cedures supply default slot values. The class-precedence list determines
which when-constructed procedures are appropriate:

To fill the slots in a new instance,

> Compute the class-precedence list for the new instance
using the topological-sorting procedure.

> For each slot,
> Collect all when-constructed procedures for that slot.

> Move along the class-precedence list, from the most
specific end. Stop when you encounter a class that is
referred to by one of the slot-specific when-constructed
procedures. Call this when-constructed procedure
the most specific when-constructed procedure for the
slot.

> Use that most specific when-constructed procedure.

To compute the class-precedence list, you can use the topological sorting
procedure, which honors the subclass-superclass principle and the left-to-
right principle:

When-Requested Procedures Override Slot Values 197

To compute an instance’s class-precedence list,
> Create fish-hook pairs
> Until all the fish-hook pairs are eliminated
> Find the exposed classes.

> Select the exposed class that is a direct superclass
of the lowest-precedence class on the emerging class-
precedence list.

> Add the selected class to the emerging class-precedence
list.

> Strike all fish-hook pairs that contain the newly added
class.

DEMON PROCEDURES

So far, you have seen that slot values can be established by inheritance
when instances are constructed, or by the direct use of a writer for slots. In
this section, you see that reading or writing can activate when-requested
procedures, when-read procedures, or when-written procedures.
Sometimes these procedures are called demons because they lurk about
doing nothing unless they see the request, read, or write operations they
were designed to look for. In contrast to ordinary demons, these when-
requested, when-read, and when-written demons are entirely friendly.

When-Requested Procedures Override Slot Values

After an instance has been constructed, you can replace slot values installed
at creation time. If you like, you can go one step further, overriding any
existing slot values altogether, using when-requested procedures. One such

when-requested procedure indicates that athletes generally exercise as a
hobby:

When a value for the Hobby slot of an Athlete is requested,

> Return Exercise.

Thus, Exercise becomes a sort of virtual slot value. No slot actually has
Exercise in it, but it seems as though the Hobby slots of all Athletes have
Exercise in them nevertheless.

When-requested procedures do not need be as simple as the when-
requested, hobby-determining procedure for Athletes. They can, for exam-
ple, take advantage of slot values already established by when-constructed
procedures:

198

Chapter

9 Frames and Inheritance

When a value for the Hobby slot of a Dwarf is requested,

> If the dwarf’s Personality slot is filled with Shy, return
Reading.

> Otherwise, return Dancing.

Now that there are two hobby-determining procedures, you need a way to
choose between them. Naturally, it makes sense to use the same precedence-
determining topological-sorting procedure that you have seen already in the
context of choosing among when-constructed procedures.

For Crazy’s Hobby slot, the governing procedure is the when-requested,
hobby-determining procedure for Dwarfs that examines the dwarf’s Person-
ality slot. Inasmuch as Crazy’s Personality slot was filled with Shy when the
Crazy instance was constructed, Crazy’s hobby must be reading. On the
other hand, for Jacque's Hobby slot, the governing procedure is the when-
requested procedure for Athletes that straightaway indicates the Athlete’s
Hobby is Exercise.

When-Read and When-Written Procedures Can
Maintain Constraints

When-read and when-written procedures are activated when slot values
are, respectively, read and written. The following when-written procedure
is activated whenever a value is written into the Physique slot of an Athlete
after the Athlete is constructed:

When a value is written in the Physique slot of an Athlete,

> If the new value is Muscular, write Large in the Athlete’s
Appetite slot.

Evidently, this when-written procedure captures a constraint relating an
Athlete’s Physique to the Athlete’s Appetite: If the new slot value is Mus-
cular, then Large is written into the Appetite slot. Thus, Muscular Athletes
have Large Appetites, in contrast to Gourmands, who have Huge Appetites,
and ordinary Dwarfs, who have Small Appetites.

As the example illustrates, when-read and when-written procedures
can be used to ensure that a change in one slot’s value is reflected in an
appropriate, automatic change to another slot’s value. In this role, they
perform as constraint-enforcing bookkeepers.

In contrast to when-constructed and when-requested procedures, all
applicable when-read and when-written procedures always are activated—
rather than only the one with the highest precedence as determined by
the topological sorting procedure. Given that all applicable when-read
and when-written procedures are activated, however, there is a question

With-Respect-to Procedures Deal with Perspectives and Contexts 199

of order. Sophisticated frame systems provide you with a variety of op-
tions.

With-Respect-to Procedures Deal with
Perspectives and Contexts

Sometimes, the proper way to think about an instance is determined by
a particular perspective. A particular dwarf, Blimpy, may be considered
big for a dwarf, but small when viewed from the perspective of, say, Snow
White. At other times, the proper way to think about an instance is
conditioned by the context in which instance lies. A particular person, for
example, may be happy when hiking in the mountains, yet grumpy when
traveling on an airplane.

To deal with these dependencies, you use with-respect-to proce-
dures, which are when-requested procedures that are specialized to more
than one class. The following, for example, are two with-respect-to size-
determining procedures, each of which is specialized to two classes, the
first being the class to which an instance belongs, and the second being the
reference class:

When a value for the Size slot of Blimpy, from the perspec-
tive of a typical dwarf, is requested,

> Return Big.

When a value for the Size slot of Blimpy, from the perspec-
tive of a typical person, is requested,

> Return Small.

Similarly, you can define with-respect-to procedures that involve context:

When a value for the Mood slot of Patrick, in the context
of Mountain Hiking, is requested,

> Return Happy.

When a value for the Mood slot of Patrick, in the context
of Airplane Travel, is requested,

> Return Grumpy.

200

Chapter

9 Frames and Inheritance

Inheritance and Demons introduce Procedural Semantics

When no demons are used, frame systems can be viewed as semantic nets.
When demons are used, however, a great deal of procedural knowledge can
be incorporated into a particular frame system. Accordingly, the mecha-
nisms that enable the incorporation of procedural knowledge are prominent
in the specification for frame systems:

A frame system is a representation
That is a semantic net
In which

> The language of nodes and links is replaced by the language
of frames and slots.

> Ako slots define a hierarchy of class frames.

> Is-a slots determine to which classes an instance frame be-
longs.

> Various when-constructed, when-requested, when-read, when-
written, and with-respect-to procedures supply default val-
ues, override slot values, and maintain constraints.

> A precedence procedure selects appropriate when-constructed,
when-requested, when-read, when-written, and with-respect-
to procedures by reference to the class hierarchy.

With constructors that

> Construct a class frame, given a list of superclasses, and a
list of slots

> Construct an instance frame, given a list of direct super-
classes

> Construct a when-requested, when-read, when-written, or
with-respect-to procedure

With writers that
> Establish a slot’s value, given an instance, a slot, and a value
With readers that

> Produce a slot’s value, given an instance and a slot

Recall that you have an example of procedural semantics when meaning
is defined by a set of procedures that operate on descriptions in a represen-
tation. Those procedures often lie outside the representation. In a frame
system, however, powerful procedures are brought into the representation
itself, becoming part of it.

One kind of incorporated procedural knowledge lies in the procedures
for computing class precedence and using class-precedence to determine

Object-Oriented Programming Focuses on Shared Knowledge 201

default slot values, thus contributing to the meaning of the Is-a and Ako
slots. Another kind of incorporated procedural knowledge lies in demon
procedures, many of which are permanent parts of whole classes of frame
systems.

The idea of incorporating procedural knowledge into a representa-
tion is extremely powerful. In subsequent chapters, you see that you can
build powerful problem solvers merely by adding some class definitions and
constraint-enforcing demons to an off-the-shelf, generic frame system. Lit-
tle is left to be done from scratch, other than the description of particular
problems or situations.

Object-Oriented Programming Focuses on Shared Knowledge

You can benefit from the virtues of knowledge sharing, not only when
creating, writing, and reading slot values, but also when performing actions
in general.

Consider, for example, the problem you face when you have to decide
how to eat various foods at a fancy dinner. You can capture the advice
offered by a typical etiquette book in when-applied procedures such as the
following:

To eat when Soup is to be eaten,
> Use a big spoon.

To eat when Salad is to be eaten,

> Use a small fork.

To eat when the Entree is to be eaten,
> Use a big fork and a big knife.

Thus, a when-applied procedure is a procedure that helps you to per-
form an action in a manner suited to the object acted on.

Note that when-applied procedures, like other demon procedures, are
shared among subclasses automatically. Accordingly, you do not need to
write and maintain separate procedures for every possible subclass of the
soup, salad, and entree classes. If, however, some soup, salad, or entree
subclass calls for an unusual or special tool, you can construct another
when-applied procedure easily, specialize it to the appropriate subclass,
an thereby ensure that your new, specific procedure will displace the old,
general one:

202

Chapter

9 Frames and Inheritance

To eat when the Entree is a Lobster,

> Use a tiny fork and a nutcracker.

Essentially, an object-oriented programming language enables knowl-
edge sharing by providing mechanisms for defining object classes, creating
individuals, and writing when-applied procedures. The virtues of knowl-
edge sharing have made object-oriented programming languages increas-
ingly popular.

FRAMES, EVENTS, AND INHERITANCE

In the previous section, you learned how you can capture general knowl-
edge about individuals by using frames. In this section, you learn how
frames can capture general knowledge about events of the sort described
in newspapers.

Digesting News Seems to Involve Frame
Retrieving and Slot Filling

Any news report of an earthquake probably will supply the place; the time;
the number of people killed, injured, and homeless; the amount of property
damage; the magnitude on the Richter scale; and possibly the name of the
geological fault that has slipped. To represent this kind of knowledge in
frames, you need the Earthquake, Disaster, and Event frames shown in
figure 9.8.

Now suppose you have a news story freshly arrived from a wire service.
You want to use that story to fill in the slots in an appropriate instance
frame. Curiously, for many news stories—earthquake stories in particular—
primitive when-constructed procedures can fill in the slots by looking in the
story for various sorts of numbers:

To fill the Time slot when a new Event is constructed,
> Find a number with a colon in it and write it in the slot.

To fill the Fatalities slot when a new Disaster is constructed,

> Find an integer near a word with a root such as kill or
die, and write it in the slot.

To fill the Damage slot when a new Disaster is constructed,

> Find a number next to a dollar sign, and write it in the
slot.

Digesting News Seems to Involve Frame Retrieving and Slot Filling

203

Figure 9.8 A net connecting
frames for news stories. By A
inheritance on two levels, it is
clear that earthquake stories Event
typically have seven slots to be Ako (e
filled. All may have slot-filling Time]
procedures attached. Day [
c- Place 1
Disaster Celebration
Ako (e] Ako o]
Damage [Host 1
Fatalites] Guests []
Earthquake Wedding
Ako e 1 Ako e]
Fault 1 Bride]
Magnitude[] Groom [__]
Flood Birthday-party
Ako e] Ako e 1
River 1 Celebrant]
Crest] Age —]

To fill the Magnitude slot when a new Earthquake is con-
structed,

> Find a decimal number between 1.0 and 10.0, and write
it in the slot.

Other simple procedures can fill in nonnumeric slots:

To fill the Day slot when a new Event is constructed,

> Find a word such as today, yesterday, tomorrow, or the
name of one of the days of the week, and write it in the
slot.

204 Chapter 9 Frames and Inheritance

Figure 9.9 A frame produced

by two news stories. One news

story, correctly analyzed, is Earthquake

about a genuine earthquake. :

The other news story, muffed, is Time

about earthquake research. Day Today

= Place Lower-Slabovia
Damage 500,000,000
Fatalities 25
Fault Sadie-Hawkins
Magnitude | 8.5

To fill the Place slot when a new Event is constructed,

> Find a name that appears in a dictionary of geographical
places and write that name in the slot.

To fill the Fault slot when a new Earthquake is constructed,

> Find a proper name near the word fault and write it in
the slot.

Consequently, analyzing stories such as the following can be easy, given
that the title evokes the Earthquake frame:

Earthquake Hits Lower Slabovia
Today, an extremely serious earthquake of magnitude 8.5 hit Lower
Slabovia, killing 25 people and causing $500 million in damage.
The President of Lower Slabovia said that the hard-hit area near
the Sadie Hawkins fault has been a danger zone for years.

In Chapter 7, you learned that, whenever a pattern is filled in with appro-
priate variable values, it is said to be instantiated. Figure 9.9 shows the
instantiated frame constructed for the earthquake story. Once the frame is
instantiated, the frame’s slot values can be used to instantiate a summary
pattern such as the following:

Digesting News Seems to Involve Frame Retrieving and Slot Filling 205

Earthquake Summary Pattern
An earthquake occurred in <wvalue in Location slot> <value in Day
slot>. There were <value in Fatalities slot> fatalities and $<value
in Damage slot> in property damage. The magnitude was <value
in Magnitude slot> on the Richter scale; the fault involved was the
<walue in Fault slot>.

Thus, you get the following summary by instantiating the earthquake sum-
mary pattern using data transferred in from an instantiated Earthquake
frame:

Instantiated Earthquake Summary Pattern

An earthquake occurred in Lower Slabovia today. There were 25
fatalities and $500 million in property damage. The magnitude was
8.5 on the Richter scale; the fault involved was the Sadie Hawkins.

Evidently, the Earthquake frame stands between the story and its summary,
helping to bridge the gap, so to speak.

Note, however, that slot filling using simple, special-purpose procedures
can lead to silly results, given that the special-purpose procedures really
do not understand stories. Consider this example:

Earthquake Study Stopped
Today, the President of Lower Slabovia killed 25 proposals total-
ing $500 million for research in earthquake prediction. Our Lower
Slabovian correspondent calculates that 8.5 research proposals are
rejected for every one approved. There are rumors that the Presi-
dent’s science advisor, Sadie Hawkins, is at fault.

Shudder to think: This story could be summarized, naively, as though
it were the story about an actual earthquake, producing the same frame
shown before in figure 9.9 and the same instantiated earthquake summary
pattern.

Of course, creating procedures for general news is much harder than
creating procedures for specialized news. Interestingly, good news writers
seem to use certain conventions that help:

8 The title of a news story and perhaps the first sentence or two evoke a
central frame.

® Subsequent material fills slots in the central frame. The slot-filling
process evokes other frames introducing more open slots.

B Cause-effect relations are given explicitly. Readers do not need to
deduce causes, because words such as because appear frequently.

® Few pronouns, if any, are used. In political news, for example, the
nation’s legislature may be referred to as “Congress,” or “Capitol Hill,”
or “Washington’s lawmakers,” according to fancy.

206 Chapter 9 Frames and Inheritance

® Few new frames, if any, need to be constructed. Creating new frames
requires reflection, and reflection is discouraged.

Event-Describing Frames Make Stereotyped
Information Explicit

You have seen that the information in event frames and when-constructed
procedures make certain expectations and procedures explicit:

B The slots in event frames make explicit what you should expect to
know about them.

® The when-constructed procedures associated with event frames make
explicit how you can try to acquire what you expect to know.

By making explicit appropriate knowledge—what you expect to know and
how to acquire what you expect to know—event frames and their associated
procedures satisfy an important criterion for good representation.

SUMMARY

B A frame system can be viewed as a generalized semantic net. When
you speak about frames, however, your language stresses instances or
classes, rather than nodes, and stresses slots and slot values, rather
than links and link destinations.

® Inheritance moves default slot values from classes to instances through
the activation of the appropriate when-constructed procedure.

® To determine which when-constructed procedure dominates all other
applicable when-constructed procedures, you have to convert a class
hierarchy into a class-precedence list. Generally, the conversion should
be such that each class appears before all that class’s superclasses and
each class’s direct superclasses appear in order.

B When-requested procedures override slot values. When-read and when-
written procedures maintain constraints. With-respect-to procedures
deal with perspectives and contexts.

B Digesting news seems to involve inheritance. Your understanding of an
earthquake news story, for example, benefits from your knowledge of
the connection between earthquakes and disasters and your knowledge
of the connection between disasters and events in general.

B Shared knowledge, located centrally, is easier to construct when you
write it down, easier to correct when you make a mistake, easier to
keep up to date as times change, and easier to distribute because it
can be distributed automatically.

Background 207

BACKGROUND

Marvin Minsky is largely responsible for defining and popularizing many of
the notions connected with frames [1975]. Other important contributions
have been made via the many frame-oriented representation languages pat-
terned after Minsky’s ideas.

For a discussion of inheritance as embodied in a programming language,
see the monumental reference work Common Lisp, The Language, by Guy
L. Steele, Jr. [1990)

The discussion of news is based on the work of Gerald F. DeJong II
[1979].

Frames and
Commonsense

In Chapter 9, you learned how frames can capture the properties of
individuals and events. In this chapter, you learn how frames can capture
detailed knowledge about how acts happen.

First, you learn about how thematic-role frames describe the action
conveyed by the verbs and nouns appearing in typical declarative sentences.
Next, you learn how action frames, state-change frames, subaction links
and result links describe what happens on a deeper, syntax-independent
level that is more suited to question answering, sentence paraphrasing, and
language translating.

Once you have finished this chapter, you will understand that frames
make it possible to capture and exploit some of the knowledge carried, both
explicitly and implicitly, by human language.

THEMATIC-ROLE FRAMES

Much of what happens in the world involves actions, and objects undergo-
ing change. It is natural, therefore, that many of the sentences in human
language amount to descriptions that specify actions, identify the object
undergoing change, and indicate which other objects are involved in the
change. In this section, you learn about one representation for that kind of
knowledge, you learn how to build descriptions using that representation,
and you learn how to use those descriptions to answer questions.

209

210

Chapter

10 Frames and Commonsense

An Object’s Thematic Role Specifies the
Object’s Relation to an Action

In linguistic terms, verbs often specify actions, and noun phrases identify
the objects that participate in the action. Each noun phrase’s thematic
role specifies how the object participates in the action. You speak, for
example, of the agent, thematic object, and instrument thematic roles.!

The sentence, “Robbie hit a ball with a racket,” for example, carries
information about how Robbie, a ball, and a racket relate to the verb hit.
A procedure that understands such a sentence must discover that Robbie
is the agent because he performs the action of hitting, that the ball is the
thematic object because it is the object hit, and that the racket is the
instrument because it is the tool with which hitting is done.

Thus, sentence analysis requires, in part, the answers to these ques-
tions:

B What thematic roles are to be filled by a sentence?
® How is it possible to determine the thematic roles of the noun phrases
in a sentence?

The number of thematic roles embraced by various theories varies consider-
ably. Some people use a half-dozen thematic roles. Others use three or four
times as many. The exact number does not matter much, as long as it is
great enough to expose natural constraints on how verbs and thematic-role
instances form sentences.

For illustration, let us confine ourselves to a world for which the the-
matic roles shown in figure 10.1 are adequate.

B Agent. The agent causes the action to occur. Volition is generally
implied, as in “Robbie hit the ball,” but there are exceptions: “The
moon eclipsed the sun.” The agent is often the surface subject, but in
a passive sentence, the agent also may appear in a prepositional phrase:
“The ball was hit by Robbie.”

m Coagent. The word with may introduce a noun phrase that serves as a
partner to the principal agent. The two carry out the action together:
“Robbie played tennis with Suzie.”

® Beneficiary. The beneficiary is the person for whom an action is
performed: “Robbie bought the balls for Suzie.”

B Thematic object. The thematic object is the object the sentence
is really all about—typically the object undergoing a change. Often,
the thematic object is the same as the syntactic direct object, as in
“Robbie hit the ball.” On the other hand, in a passive sentence, the
thematic object appears as the syntactic subject as in “The ball was
hit by Robbie.”

TUsing the term thematic object, instead of just the term object, avoids confusion
with the syntactic direct and indirect objects. Some people avoid the word object
altogether, calling the thematic object the patient.

An Object’s Thematic Role Specifies the Object’s Relation to an Action 211

Old
surroundings

Beneficiary @

Source Mp— Destination

Time Duration

Coagent

>< XY Location

Instrument

Conveyance New

surroundings
Trajectory g

Thematic-role frame
Verb
Agent
Coagent
Beneficiary
Thematic object
Instrument

[sowes] tme [
[1 Destination [| Locaion[]
: Oldsurroundings [| Duraton [|
New surroundings [|
[__—__I Conveyance]
Trajectory]

Figure 10.1
Thematic roles focus
on how noun phrases
relate to actions.

B Instrument. The instrument is a tool used by the agent. The prepo-
sition with typically introduces instrument noun phrases: “Robbie hit
a ball with a racket.”

® Source and destination. Changes are often simple changes in phys-
ical position. The source is the initial position, and the destination is
the final position: “Robbie went from the dining room to the kitchen.”

212

Chapter

10 Frames and Commonsense

® Old surroundings and new surroundings. The old surroundings is
the location out of which something comes, and the new surroundings
is the location in which it goes: “Robbie took the cereal out of the boz
and put it into the bowl.”

B Conveyance. The conveyance is something in which or on which one
travels: “Robbie always goes by train.”

8 Trajectory. Motion from source to destination takes place over a tra-
jectory. In contrast to the other role possibilities, several prepositions
can serve to introduce trajectory noun phrases: “Robbie and Suzie
went in through the front door; he carried her over the threshold.”

® Location. The location is where an action occurs. As in the trajectory
role, several prepositions are possible, each of which conveys meaning
in addition to serving as a signal that a location noun phrase is coming:
“Robbie and Suzie studied in the library, at a desk, by the wall, under
a picture, near the door.”

® Time. Time specifies when an action occurs. Prepositions such as
at, before, and after introduce noun phrases serving as time role fillers.
“Robbie and Susie left before noon.”

8 Duration. Duration specifies how long an action takes. Prepositions
such as for indicate duration. “Robbie and Susie Jogged for an hour.”

Another way of summarizing all this information about thematic roles is
to use the representation specification form, noting that all the thematic
roles involved in a particular action can be viewed as slot values for a
thematic-role frame:

A thematic-role system is a representation
That is a frame system
In which

> The slots are, typically, verb, agent, coagent, beneficiary,
thematic object, instrument, source, destination, old sur-
roundings, new surroundings, conveyance, trajectory, time,
location, and duration.

> Each frame describes an action. The verb slot identifies
the action. Other slots identify objects that play various
roles with respect to the action.

Filled Thematic Roles Help You to Answer Questions

Because thematic-role frames make certain roles explicit, many questions
are easy to answer once values for thematic-role slots are worked out. Con-
sider this sentence:

Robbie made coffee for Suzie with a percolator.

Filled Thematic Roles Help You to Answer Questions 213

Figure 10.2 A filled thematic-
role frame. The slot values
provide answers to a variety

of questions about what

happened.
]

Thematic-role frame

vers
Agent
Beneficiary
Thematic Object
Instrument

Figure 10.3 Another filled
thematic-role frame. Again, the
slot values provide answers to
a variety of questions about

what happened.
L]

Thematic-role frame

Verb
Agent
Coagent
Destination

Conveyance Car

There are four noun phrases, each of which fits into a particular role, as
shown in figure 10.2. Four corresponding questions can be answered:

What was made? — thematic object —
Who made it? — agent —
With what was it made? — instrument -
For whom was it made? — beneficiary —

Similar results follow from another sentence:

Robbie went to the theater with Suzie by car.

coffee
Robbie

a percolator
Suzie

Again there are four noun phrases, each of which fits into a particular role,
as shown in figure 10.3.

Who went?

- agent —
With whom did he go? — coagent —
To where did he go? — destination —
By what means did they travel? — conveyance @ —

Robbie
Suzie

the theater
car

214

Chapter

10 Frames and Commonsense

Thus, thematic roles roughly correspond to some of the simple questions
about actions.

Although such question answering is important, you must keep in mind
that it is only one of the functions of front-line semantic analysis. Pre-
sumably, the results of thematic-role identification are the fodder for still
deeper mechanisms that understand the relations among individual sen-
tences, evolving contexts, and global knowledge about the world.

Various Constraints Establish Thematic Roles

Of course, slot values have to be ferreted out by a language-understanding
program before they can support question analysis. Fortunately, for simple
English sentences, many constraints help you to establish the thematic role
of any given noun phrase:

B Each verb carries strong preferences about what thematic roles can
appear and where the noun phrases that fill those thematic roles can
be placed, relative to the verb.

B Prepositions limit a noun phrase’s role possibilities.

Here is the relation between prepositions and role possibilities:

Preposition Allowable thematic role

by agent or conveyance or location
with coagent or instrument

for beneficiary or duration

from source

to destination

Thus, the preposition by signals that you can expect an agent, a con-
veyance, or a location, but not a coagent, beneficiary, instrument, source,
or destination.

® The noun itself may limit possible role identifications.

For example, you get a different picture from “Robbie was sent to the scrap
heap by parcel post,” than from “Robbie was sent to the scrap heap by
Marcel Proust,” because parcel post is more likely to be a conveyance,
whereas Marcel Proust is more likely to be an agent.

® Only one filler is allowed in any sentence for most thematic roles.

If, somehow, the thematic role of one noun phrase is determined, then the
other noun phrases in the sentence are forced to fill other thematic roles.
Note, however, that a filler may involve more than one ob ject if the ob-
Jects are conjoined explicitly by and. In “Robbie ate with a fork with a gaz-
erkle,” it is not clear whether the gazerkle is a coagent, because gazerkle is
a made-up word. It is clear, however, that the gazerkle is not an instrument
because the fork has a lock on that. On the other hand, if the sentence
were, “Robbie ate with a fork and a gazerkle,” the fork and gazerkle would

A Variety of Constraints Help Establish Verb Meanings 215

fill the instrument thematic role together, and hearing such a sentence, you
would learn that a gazerkle can be an instrument.

Time, trajectory, and location are exceptions to the one-filler rule be-
cause more than one noun phrase may be involved in their description. It is
perfectly reasonable to say, for example, “Robbie ate at noon on Monday.”

A Variety of Constraints Help Establish Verb Meanings

Verbs and verb phrases in isolation exhibit meaning ambiguity just as noun
phrases exhibit thematic-role ambiguity. Conveniently, meaning-selection
constraints often seem to resolve the ambiguity.

The noun phrase in the thematic-object thematic role can help consid-
erably. Consider the following examples:
He shot the rabbit.
He shot the picture.

Shooting a rifle and shooting a camera are very different kinds of shooting,
even though there are similarities at a certain level of abstraction. The
words rifle and camera are not specifically mentioned; information found
in the words rabbit and picture is apparently enough to guide your inter-
pretation toward one meaning or the other.

Another way verb meanings are selected is through a small family of
words called particles. For example, see how particles select meanings for
throw and pick:

He threw some food.

He threw away some food.

He threw up some food.

She picked up some candy.

She picked out a nice assortment.

One other strong influence on meaning derives from the overall context.
Curiously, quite a lot can be gained from a very coarse categorization of
life’s subjects into a few worlds:

@ The physical world.

Objects change position, and they acquire and lose various properties and
relations to other objects. Other worlds seem to relate to the physical world
through analogy.

® The mental world.

The objects in the mental world are facts, ideas, and concepts. You some-
times think about them with actions, properties, and relations borrowed
from the physical world, just as though the abstractions were physical
things. Consider these examples:

The theory is supported by facts.
The overall concept is solid.
The idea was exposed in the class.

216 Chapter 10 Frames and Commonsense

Figure 10.4 Many constraints
help determine noun-phrase
thematic roles and verb- Preposition

phrase meanings. Among

the noun phrases, the one in

the thematic object role has

a strong influence on verb

meaning. thematic-role
/

Noun Position

in the
sentence

Verb phrase
meaning

® The ownership world.

In the ownership world, the objects are abstract certificates of control,
possession, or ownership, whose locations are in the hands of people or
organizations. Again, the events in this world often are communicated in
language that is analogous to that of the physical world:

Robbie took the ball away from Bozo.
The bank took the house back.

Note that transfer of a physical thing is not necessarily implied. Robbie is
probably holding the ball he took control of, but the bank probably never

moves a physical house.

Constraints Enable Sentence Analysis

As suggested in figure 10.4, many constraints help you to assign thematic
roles to the noun phrases in simple sentences. To see how they do so, you

need to agree to a few assumptions.

First, assume you have a dictionary of stored information about nouns
and verbs. Also, assume, for the sake of simplicity, that all noun phrases
help you to describe the action; no noun phrase helps you to describe

another noun phrase.

Of course, in addition to determining noun-phrase thematic roles, you
also need to determine the verb phrase’s meaning. Several constraints
enable you to hack away at the potential meanings, ultimately determining
a unique interpretation, or, at worst, a small number of interpretations.
Noting the presence of a particle helps you considerably. You can instantly
throw out verb meanings that are inconsistent with an observed particle,
or that are inconsistent with the absence of a particle.

Constraints Enable Sentence Analysis 217

If you wish to determine the noun-phrase thematic roles, the first step
is to locate the thematic object among the noun phrases without preposi-
tions. If the verb phrase is passive, then the thematic object—the thing
the sentence is about—must occupy a spot in front of the verb. It is what
you learned in grammar school to call the syntactic subject.

If the verb is active, then the thematic object follows the verb. If there
is only one noun phrase after the verb, possibly accompanied by one or
more prepositional phrases, then that noun phrase is the thematic object.
In the rest of this chapter, such noun phrases are called preposition-free
noun phrases to distinguish them from noun phrases that are part of
larger prepositional phrases.

If there are two preposition-free noun phrases following the verb, then
the second is the thematic object, as long as the verb requires a thematic
object. Assume that it does, constraining sentence construction, just to
keep illustrative analysis manageable.

With the thematic object in hand, there is an opportunity to weed out
unlikely verb meanings—namely, those whose stored meanings are incom-
patible with the thematic object.

At this point, it is conceivable that more than one verb meaning re-
mains. Accordingly, you must carry more than one interpretation forward
in parallel. Fortunately, in human communication, as the number of in-
terpretations seems about to explode, some powerful constraint appears to
keep the number of interpretations small. Note, incidentally, that strength
in one dimension allows flexibility in another. It is easy to imagine how a
language might have a larger number of prepositions than English has, with
an offsetting reduction in word-order constraint. Finnish is an example of
such a language.

Now you can nail down the thematic roles for other noun phrases,
starting with those without prepositions. Again, the surviving verb mean-
ings may state preferences about what is needed and where what is needed
can be found. Many active verbs, for example, demand an explicit agent
and prefer to find that agent in the syntactic subject position. Such verb-
carried demands are ordinarily sufficient to fix the role for the one or two
preposition-free noun phrases that may be found in addition to the thematic
object. Knowing the roles for the preposition-free noun phrases greatly sim-
plifies the analysis of other noun phrases, because those other noun phrases
cannot be assigned to thematic roles that are already spoken for.

Consider, for example, a sentence containing a noun phrase introduced
by the word by. This word typically introduces either the agent role or
the conveyance or the location. If you have already determined that agent
role is spoken for by the syntactic subject, then only the conveyance and
location possibilities remain. Generally, you can resolve this remaining
ambiguity either by using knowledge about the words in the noun phrase
or by deferring to the dictionary-stated needs of the verb.

218 Chapter 10 Frames and Commonsense

Finally, once the thematic roles are known for all noun phrases, cer-
tain roles may be present that help you to resolve remaining verb-meaning
ambiguity.

Whew! It is time to capture all these steps by restating them in pro-
cedural English:

To determine thematic roles,

> Obtain possible verb meanings from the dictionary. Throw
away those verb meanings that are inconsistent with the
verb’s particle, if there are any.

> Find the thematic object among the preposition-free noun
phrases.

> Throw away the verb meanings that the dictionary says
are inconsistent with the thematic object.

> For each remaining noun phrase, determine the thematic
role.

> Throw away the verb meanings that the dictionary says
are inconsistent with the observed thematic roles.

Although there are more complicated procedures, the one introduced here
is powerful enough to handle the forthcoming examples.

Examples Using Take lllustrate How Constraints Interact

Suppose Robbie and Suzie communicate using a simple subset of English.
To keep the illustration simple, they talk only about the things shown in
figure 10.5. The verbs may have more than one meaning, but they certainly
do not have all of the meanings possible in unrestricted English.

Robbie and Suzie move objects, get sick, engage in business activities,
and date. Consequently, the verb take has a variety of meanings:

B Takel means transport. Either a source or a destination or both should
appear.

® Taoke2 means swindle. The source and destination roles are absent
when this meaning is intended. Only people can be swindled.

@ Take3 means to swallow medicine. The available medicines include
aspirin. The beneficiary is the same as the agent.

B Take4 means to steal. People are not stolen.

® Toke5 means to initiate and execute a social event with another person.
The particle out is always used.

® Take6 means to remove. The particle out is always used. People cannot
be removed.

W Take7means to assume control. The particle over signals this meaning.

B Take8 means to remove from the body. The particle off is always used.

Examples Using Take Illustrate How Constraints Interact 219

Figure 10.5 A small world
used to illustrate the effect of
various sentence constraints.

Inanimate
thing

[Time | [Object |

Box Ball Bell

These various meanings of take combine with noun phrases according to
the thematic-role constraints you have been studying. Assume all pas-
sive sentences have exactly one preposition-free noun phrase, the syntactic
subject, and that preposition-free noun phrase appears before the verb.
Also assume that thematic roles are subject to the constraints given in the
following table:

Thematic role Preposition Allowed class
agent by person
coagent with person
beneficiary for person
thematic object — —
instrument with inanimate
source from —
destination to —

old surroundings out of inanimate
new surroundings into inanimate
conveyance by inanimate
duration for a time

Now you can examine a few sentences with a view toward better under-
standing the way various constraints interact.

220

Chapter

10 Frames and Commonsense

Robbie took aspirin.

‘The verb meanings Take5 through Take8 are eliminated, because there is no
particle. Evidently Robbie is the agent and aspirin is the thematic object
by virtue of word order and the lack of alternatives. Takel is unlikely,
because there are no noun phrases that can be either the source or the
destination of a transporting action. Take2 is out, because aspirin is not
a subclass of people and hence cannot be swindled. Thus, the sentence
means that Robbie either swallowed or stole aspirin.

Robbie took aspirin for Suzie.

Robbie is the agent and aspirin is the thematic object by the same word-
order argument used before. Again only Taked and Take4 survive particle
and thematic object considerations. For can flag either the beneficiary
or duration, but because Suzie is not time, she must be the beneficiary.
This observation, in turn, eliminates the Take3 interpretation—swallowing
medicine—because swallowing medicine requires the agent and beneficiary
to be the same. Robbie has stolen. Of course, Robbie may have swallowed
aspirin because Suzie begged and pleaded with him to do so, but that
conclusion is incompatible with our assumptions here.

Robbie took out Suzie.

The particle limits the verb meaning to Take5 and Take6, to date or to
remove. Take6 requires an inanimate thematic object, so Robbie dated
Suzie.

Robbie took out the boz.

A box is inanimate; hence it is removed, not dated.

Robbie took the ball to Suzie.

The ball is the thematic object, so Takel, to transport, and Take4, to steal,
are the alternatives. Because a destination is given, Takel is preferred.
Robbie took Suzie.

Suzie being the thematic object, Take? and Take2, to transport and to

swindle, are possible. Because there is no source or destination, Robbie
has probably swindled Suzie.

Robbie took Suzie to town.

With a destination, the swindle conclusion is unlikely. Robbie has trans-
ported Suzie.

The bell was taken out of town by Robbie by car for a day for Suzie.

Because the sentence is passive, the bell is the thematic object. Because a
bell is both inanimate and not a medicine, the verb meaning must be Take?!
or Take4. The compound preposition out of can flag old surroundings.
Knowing that a town is a place and places are possible old surroundings
resolves the ambiguity in favor of Takel. Car is an unknown word, so it
could be either the agent or a conveyance. But because Robbie is animate,

Primitive Actions Describe Many Higher-Level Actions 221

he must be an agent, thus filling the agent role, forcing the car to be a
conveyance. Finally, Suzie and day are easily resolved into beneficiary and
duration, because Suzie cannot be a time and a day cannot be a beneficiary.

EXPANSION INTO PRIMITIVE ACTIONS

In the previous section, you learned how thematic-role frames deal with
the verbs and nouns in sentences. In this section, you learn how to go un-
derneath the words, searching for more meaning. Here are some examples
of what your search enables you to do:

® You can guess what happens when an action is taken. You can guess,
for example, that comforting someone probably implies that the person
emotional state improves.

® You can guess the details of how an action is done. You can know,
for example, that eating probably involves moving a fork or a spoon,
requiring the movement of a hand.

Primitive Actions Describe Many Higher-Level Actions

How many primitives are needed to describe the actions denoted by English
verbs? The answer may be a surprisingly small number. It seems that
many ordinary verbs are used as a sort of shorthand for ideas that can be
expressed as well by combinations of basic primitives and default slot fillers.
The combination process, called telescoping, accounts for an amazing
number of superficially distinct verbs.

During the 1930s, champions of Basic English as a world language
argued persuasively that people can get by with a vocabulary of only 1000
words by depending heavily on come, get, give, go, keep, let, make, put,
take, have, say, see, and send. In Basic English, the verb eat, for example,
is translated, from the thematic-role perspective, into put, together with a
new surroundings thematic role prefilled with something such as the eater’s
stomach. Indeed, the eater’s stomach is so much a part of the definition of
eat that it seems strange to have it mentioned explicitly: one does not say,
“] am eating a sandwich into my stomach.”

The following list of primitives is similar to the list in Basic English,
but it was originally constructed for the benefit of computer programs,
rather than for human communication. The list includes actions in the
physical world, the mental world, and the ownership world:

Move-body-part Move-object

Expel Ingest
Propel Speak
See Hear
Smell Feel

Move-possession Move-concept
Think-about Conclude

222 Chapter

10 Frames and Commonsense

Figure 10.6 Much of the

meaning of simple sentences
is captured by Action frames
and State-change frames tied Primitive Move-object
together through Result slots.

) Agent Robbie
Here putting a wedge on a red Object Wedge
block makes Robbie happy.
—ppy Destination | Block
Result

Action frame

i

\

State-change frame

Object Robbie's mood

Destination | Happy

A variety of examples in the rest of this section show how these primitives
help you to capture the meaning of simple sentences.

Actions Often Imply Implicit State Changes
and Cause-Effect Relations

Many sentences are about a primitive action connected to a state change
by a Result link. Consider this sentence:

Robbie enjoyed putting the wedge on the red block.

Evidently, the action caused Robbie to be in the state of being happy.
Nothing is known about how he felt before he moved the block, but while
he moved it, he was happy. It is convenient to represent such sentences as
combinations of Action frames and State-change frames. Figure 10.6, for
example, pictures what happens when Robbie puts the wedge onto the red
block. Note the Result link; it indicates that the action causes the state
change.

Of course, one action also can cause another action. You indicate this
relation by placing a Result link between the two things involved. Consider
this sentence, for example:

Suzie told Robbie to put the wedge on the red block.

For this sentence, the diagram of figure 10.7 is appropriate.
Some sentences announce only state changes, leaving the actions that
cause the state changes unspecified. Suppose someone says this:

Suzie comforted Robbie.

Actions Often Imply Subactions

223

Figure 10.7 One action can
cause another as when Suzie

tells Robbie to do something.
]

Action frame

Primitive Speak
Agent Suzie
Result

Action frame

Primitive Move-object
Agent Robbie
Object Wedge

Al

Destination | Block

There is a state change because Robbie is less sad than he was, assuming
comfort implies original sadness. But what exactly did Suzie do? She
caused Robbie to be less sad, certainly, but by what action? Did she talk
with him, take him for a walk, or just help him move the wedge? There is no
way of knowing from the sentence, so all that can be done is to represent
what is known, as shown in figure 10.8. Note the use of the maximally
nonspecific Do in the Primitive slot.

Let us lock at one more example showing how actions and state changes
can interdigitate:

Robbie was gored by the test.

This language is metaphoric. The test itself presumably did no damage to
poor Robbie; it was getting a bad grade that hurt him. Moreover, no one
stuck a horn in his gut; something merely made him feel as though a horn
had been thrust into him.

The real idea conveyed, when stripped of the color, is represented in
figure 10.9. Note that Do is used because it is hard to guess precisely what
Robbie did or perhaps failed to do. Overall, the example again demon-
strates that a sentence’s verb may imply a state-change rather than an
action.

Actions Often Imply Subactions

The Subaction slot is used to indicate that an action involves one or more
subactions. Through Subaction slots, actions reveal their pieces, and then
the pieces themselves reveal their pieces, ad nauseum.

224 Chapter 10 Frames and Commonsense

Figure 10.8 Some sentences
specify only state change

even though they seem to

be about actions. Saying
“Suzie comforted Robbie” gives
no clue about how Robbie's

improved state is achieved.
C__________ |

Action frame

Primitive
Agent
Resut [@&]

Y

State-change frame

Object Robbie’s mood
Destination | Happy

Putting a wedge on a red block involves a Move-object action with
three Move-body-part subactions, as indicated in figure 10.10. Moving
the hand employs one Move-body-part, whereas grasping and ungrasping

employ two others, each dealing with finger movements.

As another example, suppose that Robbie eats some ice cream. Fig-
ure 10.11 shows how the basic action, Ingest, calls to mind a Move-object
involving a spoon. Of course, there is no way of knowing that Robbie eats
the ice cream with a spoon, given only “Robbie eats ice cream.” He may
eat an ice-cream cone or drink a milk shake. Using a spoon is only a de-
fault presumption, a general image called up if explanation is demanded

and nothing specific to the situation is known.

Primitive-Action Frames and State-Change
Frames Facilitate Question Answering and
Paraphrase Recognition

Like thematic-role frames, primitive-action frames and state-change frames
make it possible to answer certain questions directly. Here are some exam-
ples:

B How is an action done? Answer by expanding the action into primi-
tive actions and state changes. Give more detail by working through
Subaction slots.

For example, Robbie eats ice cream by ingesting it (indicated by Ingest).
He ingests it by moving a spoon (indicated by Move-object). He moves the

spoon by moving his hand (indicated by Move-body-part).

225

Figure 10.9 Considerable
knowledge may be needed

to expand simple-sounding
metaphors into an arrangement
of primitive-action and state-
change frames. The diagram
here represents a statement
that Robbie was gored by a

test.
]

Action frame

Primiive [Do |
Agent [Robbie |

Result |]

—

Action frame

Primitve [Move-possession |
Agent [Teacher]
Object | Grade |
Destination | Robbie]
Result | |

-

State-change frame
Object [Robbie's mood |
Destination | Unhappy]

What will happen if an action is done? Answer by first expanding the
action into primitive-action and state-change frames. Then you may
be able to find a similar, but more complete expansion in a database
of remembered precedents.

For example, if Suzie hits Robbie (by Move-body-part her fist to his body),
a remembered precedent may indicate, via a Result link, that he is likely
either to hit her back (by Move-body-part his fist to her body) or to cry
(by Expel tears). A remembered precedent, consisting of tightly coupled,
expectation-suggesting primitive-action and state-change frames, is called
a script.

Does one sentence have the same meaning as another? Answer by
expanding both into primitives and checking to see whether the results
match.

226 Chapter 10 Frames and Commonsense

Figure 10.10 Subaction

slots offer another way of tying
together action frames. This
simple arrangement shows that
moving a wedge is ultimately
accomplished by a sequence of

Move-body-part primitives.
.|

For example, “Suzie comforted Robbie” has the same meaning as “Suzie
did something to make Robbie happy,” because both expand into an action
frame with an unspecified action and a state-change frame with Robbie’s
mood improving. Evidently, the sentences are paraphrases of each other.

The assumption behind the paraphrase test is that sentences have the
same meaning if and only if they expand into the same primitive-action
and state-change frames—a gigantic, heavily contested assumption. Some
people deny that primitive-action and state-change frames are good canon-
ical forms for describing the meanings of sentences. Other people contend
that even if primitive-action and state-change frames do qualify as a good
canonical form, there is still no reason to believe that there is a proce-
dure that will transform sentences with the same meaning into the same
primitive-action and state-change descriptions. Still other people do not
care, arguing that paraphrase recognition is only a small, rather insignifi-
cant part of commonsense reasoning.

Action frame
Primitive
Agent
Object

Subaction
Subaction
Subaction

Destination

il

Action frame

Primitive Move-body-part
Object
Destination

Action frame

Primitive Move-body-part
Object

Action frame

Primitive Move-body-part
Object
Destination

Thematic-Role Frames and Primitive-Action Frames Have Complementary Foci 227

Figure 10.11 In this example,
Robbie eats ice cream by

moving a spoon to the mouth.
T

Action frame
Primitive | Ingest H
Agent [Robbie]
Object [Ice cream]
Subaction | ®]

Action frame

Primitve [Move-object |
Object [Spoon |
Subaction | |

Action frame

Primitive | Move-body-part |
Object | Hand]

Thematic-Role Frames and Primitive-Action
Frames Have Complementary Foci

You have seen that primitive-action and state-change frames make explicit
certain action-describing details:

The primitive actions in Primitive slots make explicit what actions
occur.

The slot values in state-change frames make explicit what state changes
occur.

The frames in Result and Subaction slots make explicit what conse-
quences and methods are assumed.

Note that primitive-action and state-change frames complement thematic-
role frames with respect to what is made explicit. The specification of
thematic-role frames, as given, places no constraint on the values allowed
in the verb slot, but the specification makes a fuss over the names of the
other slots. In contrast, in a specification for a primitive-action and state-

228

Chapter

10 Frames and Commonsense

change system, the emphasis is on Subaction and Result slots and on the
vocabulary of values allowed in the Primitive slot; everything else is loose:

A primitive action system is a representation

That is a frame system
In which

D>

Action frames contain a Primitive slot that must be filled
by a value drawn from a small, canonical set, such as
Move-body-part, Move-object, Expel, Ingest, Propel, Speak,
See, Hear, Smell, Feel, Move-possession, Move-concept,
Think-about, Conclude, and Do.

State-change frames contain an Object slot that is filled
with an application-specific object or quantity.

An Action frame may be connected to one or more other
Action frames via a Subaction slot.

Action frame and State-change frames may be connected
to each other via Result slots.

Other slots and slot values are application specific.

SUMMARY

A thematic-role frame is an action-oriented representation focused on
identifying the roles played by various objects.

Primitive-action frames and state-change frames constitute an action-
oriented representation focused on using background knowledge to iden-
tify primitive actions and infer subactions and state changes.

Various constraints establish thematic roles and verb meanings. Once a
thematic-role frame is instantiated, it can be used to answer questions
about who or what played what role in an action.

Instantiated primitive-action frames and state-change frames can be
used to answer questions about what probably was done or what prob-
ably happened next.

BACKGROUND

C. J. Fillmore is closely associated with thematic-role grammar, which he
called case grammar [1968]. Many of the ideas in this chapter were more
directly influenced by the late William A. Martin. Most of his work was
never published, regrettably.

CYC Captures Commonsense Knowledge

The most ambitious knowledge-representation effort in artificial intelligence is
the CYC project, so named because one main goal of the project is to recast
much of the knowledge you would find in a desk encyclopedia so as to make that
knowledge accessible to reasoning programs. T

Believing there is no way to be intelligent without knowing a lot, the devel-
opers of CYC have created a vast network of concept-describing frames. A tiny
fraction of the frames in that vast network, along with a tiny fraction of the links
connecting the frames in that tiny fraction, is shown here:

Thing
rRepresented thing ‘ [Individual object I
Collection ’ Spatial thingJ ‘ Event l ‘ Intangible object ‘
Object type Something occurring
(Mathematical object *
1 Commercial transaction4|
Intangible
object type
Buying

Slot or /
constraint
on a slot (Buying a tangible Buying a service Renting

Constraint . . .
Slot on a slot ' Buying a toothbrush ‘ ‘Takmg a taxmab‘

Various specialized reasoning modules work with many types of links, not
just with the inheritance links shown in the illustration. Thus, inheritance is just
one of many methods that CYC can use to reach conclusions. At the moment,
CYC has more than 4000 link types and dozens of specialized reasoning modules.

Knowledge is entered by ontological engineers, who use a sophisticated
human-machine interface to increase the speed and reliability of knowledge enter-
ing. So far, they have entered more than 5,000 distinct, but richly interconnected
frames.

230

Chapter

10 Frames and Commonsense

The basic book on Basic English is Basic English: International Second
Language, by C. K. Ogden [1968]. It is a delightful book, which demon-
strates that a small vocabulary can convey a lot of information. The
purpose was to promote a subset of English to solve the tower-of-Babel
problem.

Yorick A. Wilks contributed importantly to establishing the value of
canonical primitives for representing what sentences say on a deeper level
[1972]. The work of Roger C. Schank is better known, however, and the
discussion of action and state-change frames is based on his work [Schank
and Colby 1973].

For arguments against canonical primitives see William A. Woods’s
classic paper, “What’s in a Link” [1975].

The Cyc project was conceived, championed, and developed by Dou-
glas B. Lenat. For a comprehensive review, see Building Large Knowledge-
Based Systems [Lenat and R. V. Guha 1990).

Numeric Constraints
and Propagation

In this chapter, you learn about how propagation procedures move nu-
meric values through constraint bozes, thus performing what has come to
be called, somewhat idiomatically, numeric constraint propagation.

By way of illustration, you see how a procedure can propagate probabil-
ities through opinion nets. You also see, indirectly, how numeric constraint
propagation solves problems in image understanding by way of an example
involving elevation estimates.

When you have finished this chapter, you will understand that nu-
meric constraint propagation can achieve global consistency through local
computation.

PROPAGATION OF NUMBERS THROUGH
NUMERIC CONSTRAINT NETS

In this section, you learn how simple arithmetic constraints can be enforced
in nets, thus enabling fresh information to have far-reaching consequences.

Numeric Constraint Boxes Propagate Numbers
through Equations

Numeric constraints can be represented in a number of ways. One way,
of course, is by a set of equations. Alternatively, constraints can be rep-
resented by a net consisting of variable boxes and multiplier boxes.

231

232

Chapter

11 Numeric Constraints and Propagation

For example, the net shown in figure 11.1 corresponds to the following
equations:

Bi=1.1

B5 = 3000
C5=B1 xB5
D5=B1xC5s

Each multiplier constrains its terminals’ values such that the value at
the product terminal is the product of the values at the multiplicand ter-
minals. Note that it is better to talk of multiplicands and products, rather
than of inputs and outputs, because the multiplier box allows information
to flow toward any terminal. Knowing the two multiplicands of a three-
terminal multiplier, you can compute the product; knowing the product
and one multiplicand, you can compute the other multiplicand.

Similarly, adder boxes constrain their terminals’ values such that the
value at the sum terminal is the sum of the numbers on addend terminals.
As with multipliers, a conclusion can be reached at any terminal.

One way to arrange for these computations is to represent numeric con-
straint boxes as a frame system. That way, you can use demon procedures
to enforce constraints. Here is the specification:

A value-propagation net is a representation

That is a frame system

In which

> Variable boxes are frames that hold variable values.
> Operation boxes are frames that enforce constraints.

> Application-specific demon procedures, specialized to par-
ticular operation-box classes, compute unknown terminal
values whenever enough information is available at the
other terminals of the same operation box.

With the specification for a value-propagation net in hand, it is easy to
specialize the idea into a specification for an arithmetic constraint net:

An arithmetic constraint net is a representation
That is a value-propagation net

In which

> Variable boxes hold numbers.

> Operation boxes enforce arithmetic constraints.

Numeric Constraint Boxes Propagate Numbers through Equations 233

Figure 11.1 A numeric
constraint net representing a
set of numeric constraints.

B5 C5 D5
X s X j— -
3000
X X
B1
1.1
B1

The following, for example, is a when-written procedure for an arithmetic
constraint net that insists that the value in the product terminal of a mul-
tiplier is the product of the values at the multiplicand terminals:

When a value is written into the Multiplicand1 terminal of
a multiplier,

> When there is a value at the Multiplicand2 terminal of
the multiplier,

> If there is no value at the product terminal, write the
product of the multiplicand values into the product ter-
minal.

> Otherwise, compare the value in the product terminal
with the product of the multiplicands,

> If they are the same, do nothing.
> Otherwise, complain.

In the example of figure 11.1, this when-written procedure produces a value
at the first multiplier’s product terminal as soon as values are available at
the terminals of both ports, box B1 and box B5. Once that is done, the
same when-written procedure will place a value at the second multiplier’s
product terminal inasmuch as both of its multiplicands are available. You
can determine the result by interrogating the value of the product terminal
of box D5.

In the rest of this chapter and in subsequent chapters, you see that
several other representations can be built on top of arithmetic constraint
nets. As shown in figure 11.2, these representations include opinion nets,
discussed in this chapter, as well as various kinds of neural nets, discussed
in several chapters in Part 1I.

234 Chapter 11 Numeric Constraints and Propagation

Figure 11.2 The arithmetic-
constraint net family of F\

representations.
.]

Approximation net

Percegptron Interpolation net

Opinicjh net

Arl rﬁetic
constraint

net

In principle, the arithmetic-constraint-net family tree could be grafted
onto the semantic-net family tree shown in Chapter 2 because arithmetic-
constraint nets are a kind of value-propagation net, which, in turn, can
be viewed as a kind of frame system. On the other hand, the switch
from propagating symbolic descriptions to propagating mere numbers is
extremely radical. Accordingly, the arithmetic-constraint-net family is best
regarded as completely separate from the semantic-net family.

PROPAGATION OF PROBABILITY
BOUNDS THROUGH OPINION NETS

In the previous section, you learned how simple arithmetic constraints can
be enforced in nets. In this section, you learn that the same ideas enable
you to keep track of a conclusion’s probability.

Probability Bounds Express Uncertainty

Suppose you like to buy stocks just before splits are announced. To decide
whether a stock is about to split, you habitually consult four advisors: two
stock brokers and two mystics. You consider the brokers, as a group, to
believe that a stock will split if either of the brokers believes that it will;
similarly, you consider the mystics, as a group, to believe that a stock will

Spreadsheets Propagate Numeric Constraints
Through Numeric-Constraint Nets

The enormously successful electronic financial spreadsheet systems can be viewed
as constraint-propagation systems. You have probably seen what a spreadsheet

system looks like in equation mode:

A B C D

1 Ratio X 1.1

2 Ratio Y 1.2

3

4 1st year 2nd year 3rd year
5 Income X 3000 B1xB5 B1xCh
6 Income Y 5000 B2xB6 B2xC6
7 Expenses 9000 B7 Cc7
8 - - -
9 B5+B6—-B7 C5+C6—-C7 D5+D6-D7

Each array location contains a title, a constant, or an equation. The array loca-
tions with numbers correspond to the constants in numeric-constraint nets. The
array locations with equations describe the constraints that tie numbers together
and correspond to collections of numeric-constraint boxes. In what-if mode,
the implications of the constants are propagated throughout the spreadsheet, as
in the following example, in which a company becomes profitable after a 1-year
startup phase:

A B C D

1 Ratio X 1.1

2 Ratio Y 1.2

3

4 1st year 2nd year 3rd year
5 Income X 3000 3300 3630
6 Income Y 5000 6000 7200
7 Expenses 9000 9000 9000
8 - - -
9 —1000 300 1830

For this example, the procedure for numeric

be used.

constraint propagation nets could

236 Chapter 11 Numeric Constraints and Propagation

Figure 11.3 Upper and
lower bounds on probability
allow greater flexibility when
expressing certainty.

Upper bound

Lower bound

split if either of the mystics believes that it will. Being conservative, you
believe that a stock will split only if both the brokers group and the mystics
group believe that it will.

There are many approaches to representing as numbers opinions such
as those of the brokers and the mystics. Most approaches translate opinions
into probability numbers that indicate how frequently an assertion is true.
Probability numbers range from 0 to 1, with 1 representing the idea that
an assertion is certainly true, and 0 representing the idea that an assertion
is certainly false.

The approach explained here is more sophisticated, because each opin-
ion is translated into a range of probability numbers, rather than into only
one value. The range is specified by a lower bound on assertion probability
and an upper bound, as shown in figure 11.3.

Upper and lower bounds enable you to deal with advisors who refuse to
be pinned down precisely. With upper and lower bounds, you can capture
statements such as, “I do not know enough to give you a probability that
the stock will split, but I do know enough to say that the probability
is definitely between one-quarter and three-quarters” Of course, the upper
and lower bounds converge to one number if an advisor is willing to express
an exact probability.

Individual opinions can be tied together in various ways. Figure 11.4
shows how the various opinions in our stock-split example fit together with
constraint boxes in between.

Of course, these constraint boxes are more complicated than those
in the arithmetic boxes, being based on probability theory, rather than
arithmetic. The following constraint equations, for example, govern the
action of or boxes. For any such or box, suppose A represents an input, B

Venn Diagrams Explain Bound Constraints 237

Figure 11.4 The opinion

of the broker group is that
the stock will split if either
group thinks this will happen.
Similarly, the opinion of the
mystic group is that the stock
will split if either group thinks
this will happen. However, your
opinion is that the stock will
split only if both the broker
group and the mystic group

think this will happen.
L]

Broker 1

Broker 2

Brokers' opinion

And

Overall opinion

Mystics' opinion

represents another input, and A or B represents the output. Then, I(A4),
I(B), and /(A or B) represent lower bounds on probability. Similarly u(4),
u(B), and u(A or B) represent upper bounds on probability. Then, as you
soon learn, the following equations hold:

u(A) < u(4 or B),
I(A) > I(A or B) — u(B),
u(B) < u(A or B),
I(B) > I(A or B) — u(4),
u(4 or B) < u(A) + u(B),
I(A or B) > max[l(A), (B)].

When you combine assertions and boxes that constrain probabilities,
the result is an opinion net. When you deal with opinion nets, the words
input and output are used loosely because the constraint inequalities enable
propagation from any terminal to any terminal. You see forward prop-
agation, from input to output, in the upper part of figure 11.5, as upper
and lower probability bounds propagate through an Or box; in the lower
part of figure 11.5, you see backward propagation, as upper and lower

probability bounds propagate through an Or box from the output to the
two inputs.

Venn Diagrams Explain Bound Constraints

To understand probability bound constraints, you need to think about
diagrams such as the one shown in figure 11.6. In that diagram, each dot
denotes an event. Some of the events belong to class A; these are denoted

238 Chapter 11 Numeric Constraints and Propagation

Figure 11.5 The upper part
shows forward propagation 1
through a constraint box. New
bounds on the lower of the
two inputs, together with the
existing bounds on the other

Existing bounds

Changed bounds

input, constrain the output 0 1 1 §§;
probability to lie between 0.3 L]

and 0.8. The lower part shows] —
backward propagation through a o

constraint box. New bounds on 0 0 %E

an output probability, indicating
that the probability must lie
between 0.3 and 0.8, constrain
both input probabilities to lie
between 0 and 0.4.

Newly supplied bounds

Changed bounds

Newly supplied bounds

Changed bounds

by dots inside the rectangle labeled A. Other events belong to class B, and
they are denoted by dots inside rectangle B.

All events are inside a rectangle, called the universe, that contains all
events. If there are any events that belong to both class A and class B, the
corresponding rectangles overlap. The result is called a Venn diagram or
an event diagram.

Venn Diagrams Explain Bound Constraints 239

Figure 11.6 A Venn diagram.
Some of the events are in

A, others are in B, and still) * s .
others are in both. To reduce . ' .
clutter, you normally draw Venn . I I,
diagrams without the event- A,

denoting dots. . . ,
L] ¢ . ¢

The purpose of Venn diagrams is to help you visualize a key idea in
probability theory: if you increase the number of events in a class, corre-
sponding to an increase in the area allocated to the class in a Venn diagram,
the probability of the class must either stay the same or increase. The prob-
ability will stay the same only if the added events have zero probability.

Now suppose you want to know how the probability of the events in
either class A or class B, written p(4 or B), relates to the probabilities of
the classes themselves, p(A) and p(B). Four situations have to be consid-
ered, because as shown in figure 11.7, class A and class B may share no
events, some events, or all events, or all events in one class may be in the
other.

The heavy black lines in figure 11.7 enclose all the events in either class
A or class B. As you see, no matter with which of the four situations you
are faced, the area enclosed by the black line is at least as large as the
larger of the areas enclosed by the rectangles for class A and for class B.
Evidently then, p(A or B) > max[p(A), p(B)]. It is also clear that the area
enclosed by the black line is not larger than the sum of the areas enclosed
by class A and class B. Thus, p(A or B) < p(A) + p(B). In summary,
there are lower and upper bounds on p(4 or B):

max[p(4), p(B)] < p(A or B) < p(A) + p(B).

Now you are just a step or two away from two of the Or box-constraint
equations. You know that p(A) cannot be any less than the lower bound
given for the probability of A—namely, I(a). Similarly, p(B) cannot be less
than I(B). Thus, max[p(A), p(B)] cannot be any less than max[l(4), [(B)].
Thus, p(A or B) certainly must be greater than or equal to max[l(4), I B)],
which means that [(A or B) > max[I(A),(B)], which is one of the con-
straint equations.

240 Chapter 11

Numeric Constraints and Propagation

Figure 11.7 Venn diagrams
for thinking about the probability

that an event is either in class //// /
/ .

A orinclass B.

A

-

n
>
%

N

w
|
®
>

N
NI

\

Also, you know that p(4) cannot be any more than the upper bound,
u(A). Thus, p(A4) + p(B) cannot be any more than u(A) + u(B). Further-
more, p(A or B) certainly must be less than or equal to u(A)+u(B), which
means that u(4 or B) < u(A) + u(B), which is another of the constraint
equations.

So far, you have considered the probability that an event is in either
class A or class B. For the other four constraint equations, you need to
focus on one of the individual classes—-class A, for example.

From another look at the Venn diagram in figure 11.7, you can see
that the area enclosed by class A cannot be smaller than the area en-
closed by both class A and class B minus the area of class B. Thus,
p(A) > p(Aor B) — p(B). Similarly, the area enclosed by class A can-
not be larger than the area enclosed by both class A and class B. Thus,
p(A) < p(A or B). In summary, the lower and upper bounds on p(A) are
as follows:

p(A or B) — p(B) < p(A) < p(A or B).

Now p(A or B) cannot be any smaller than I(4 or B), and p(B) cannot
be any larger than u(B). Thus, p(4 or B) — p(B) cannot be any smaller
than I(A or B) — u(B). Consequently, p(A) must be at least as large as
(A or B) — u(B), which means that I(4) > I(A or B) — u(B), which is
another of the constraint equations.

Finally, p(A or B) cannot be any larger than u(A or B). Thus, p(A)
cannot be larger than u(4 or B), which means that u(A4) < u(A or B),

Propagation of Surface Altitudes Through Arrays 241

which is still another of the constraint equations. The remaining two equa-
tions are constraints on p(B) that mirror those just worked out for p(A).

Having seen how to work out equations for Or boxes, you could carry
on yourself, producing constraint equations for, say, And boxes:

u{A) < u(A and B) - I(B) + 1,

I(4) 20,
u(B) < u(A and B) — I(A) + 1,
iB) 20,

u(A and B) < min[u(A), u(B)],

I(A and B) > I(A) +I(B) — 1.

Propagation Moves Probability Bounds Closer Together

Now everything is in place for the advisors example. To begin, you assume
that none of the four advisors have submitted opinions. Then, the prob-
ability bounds associated with a stock split are between 0 and 1, written
[0,1].

Next, suppose that you learn that your first broker thinks that the
probability of a stock split is between 0.25 and 0.75, written [0.25,0.75].
With this information from your first broker, and general knowledge of
how to propagate probability bounds through Or boxes, you conclude
that the lower-bound probability expressed by the broker group must be
max[0.25,0] = 0.25. As in the rest of this example, the upper bound re-
mains at 1.

When you learn the opinion of the second broker, expressed as the
bounds [0.33,0.66], the lower-bound probability expressed by the broker
group becomes max|[0.25,0.33] = 0.33.

The first mystic expresses his opinion as the bounds [0.15, 0.15], causing
the lower-bound probability of the mystic group to be 0.15. The second
mystic expresses his opinion as the bounds [0.85,0.85], causing the lower-
bound probability to be 0.85. The change in the lower-bound probability
of the mystic group causes, at last, a change in the lower-bound probability
of the overall conclusion; that value moves from 0 to 0.18 because 0.33 +
0.85 — 1 =0.18, as shown in figure 11.8.

PROPAGATION OF SURFACE ALTITUDES
THROUGH ARRAYS

In the previous sections, you learned how arithmetic constraints can be
enforced in nets, thus enabling fresh information to have far-reaching con-
sequences. In this section, you learn how arithmetic constraints on the
elements of an array can lead to far-reaching consequences as well. This
kind of constraint propagation is particularly useful when you are looking

242 Chapter 11 Numeric Constraints and Propagation

Figure 11.8 The opinion net

after all opinions are known.
L]

N
| .
o ‘

or ——0
1
o

at images to determine surface properties such as distance and direction.
Here, however, you learn about the ideas through an example in another,
simpler domain.

Local Constraints Arbitrate between
Smoothness Expectations and Actual Data

Suppose that you want to make a digital terrain map—that is, a map that
indicates altitude. To keep the illustration simple, let us confine ourselves
to an east-west line along which you happen to have a collection of altitude
estimates that you have obtained by sending out people with barometers
to a few accessible places.

Assume the barometer readings, b, are sparse. Further assume that
each instrument is identified with a confidence level, ¢. The confidence
level ranges from 0, meaning worthless, to 1, meaning perfectly reliable.

At the top of figure 11.9, you see some actual terrain, along with alti-
tude estimates produced by the barometers. At the bottom of the figure,
you see the confidence levels associated with each measurement.

When you make your estimates, you should honor two principles: each
estimate should be close to the value indicated by the barometer if there
is one; and the altitude should be close to the average of the altitudes at
neighboring points, given that the terrain is fairly smooth. From these two
principles, it is only a small step to an equation that gives altitude, a;, at

Local Constraints Arbitrate between Smoothness Expectations and Actual Data 243

10 T Barometer
9 + readings

5+
4 +
34+
2 +

1
//

7r\\ Actual

terrain

L | 4 4 I 4 v + 4) 4 t (

iy
n

w +
F

" «—
0.8
0.7 1
0.6 T
0.5
0.4 4
0.3 1
0.2 1
0.1 1

o 4Lk

)
t

0.9 1 _:k///_%

' y \ + 4 y
+ t t t + t 1 + + + t T t t + t t + 1 +—

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Confidence

levels r M

4 ' t " n t " n 4 ADA 4 4 4 4) } 4 + 4 4 + 4

1 T t t t t t t t t t + + + + + +

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 11.9 The
problem is to find good
altitude estimates

for the terrain

using barometric
measurements in
which you have

varying confidence.
.|

point 7, as a weighted sum of the barometer reading there, the b;, and the
average of the neighbors’ altitudes. Using the confidence factor, ¢;, and
1 — ¢; as the weights, the equation slants the result toward the barometer
measurement in proportion to the judged reliability of the measurement.
To deal with places where there is no barometer reading, you take both b,
and c¢; to be 0:

Git1 + 01

—

Because there is one equation like this for each value of the subscript i, it

a;, = C,‘bi + (1 - C,‘)

244

Chapter

11 Numeric Constraints and Propagation

is time consuming to use the standard, sequential procedures for solving
sets of linear equations. Instead, you can find an approximate solution by
numeric constraint propagation.

The first step is to find initial altitude estimates, a;, using only the b;
and ¢; values (remember that both are taken to be 0 where no barometer
readings exist):
bit1+bi_;

—

Next, using the initial altitude estimates, you form a second, improved set
of altitude estimates. You use the same equation as before, except that
the neighbors’ altitudes are those computed as initial estimates, rather
than the barometer readings. So that you can keep the estimates straight,
superscripts specify the iteration number, with 0 representing the initial
estimates:

a; = cibi + (1 — Ci)

0 0
a1t a
2

In general, then, for the nth refinement, you have the following equation:

0,1-1 =c;b; + (1 — Ci)

n—1 n—1
Gy ta

2
This kind of numeric constraint is called a relaxation formula, a term
inherited from mathematics. Procedures that use relaxation formulas are

called relaxation procedures. The general structure of a relaxation-
based propagation procedure is as follows:

af = Cib¢ + (1 — Ci)

To propagate numeric constraints through arrays using re-
laxation,

> Call the initial array the current array.
> Until all values in the array change sufficiently slowly,

> For each element in the current array, calculate an ele-
ment for a new array using the relaxation formula.

> Make the new array the current array.

Figure 11.10 shows altitude estimates at various stages. Note that the
influence of the high, totally unreliable peak at i = 8 eventually dies out.
By the tenth iteration, things have just about settled down. After the
fortieth iteration, changes are too small to see.

Altitude values converge to their asymptotic values slowly because our
propagation procedure is too myopic. Constraint travels slowly when it
travels in tiny steps. Using a larger separation between points helps you
to reach convergence faster, but then the result lacks fine detail.

Summary 245

Barometer readings After tenth iteration

1 1

9 9

8 8

7 7

6 6

5 5

4 4

3] I

2 2

" H o il Hﬂﬂﬂﬂﬂﬂﬂﬂm Ao

° 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
After first iteration After twentieth iteration

1 107

9 [

8 8

7 7

6 6

5 5

4 4

: H B I

2 2

i H il Hnﬂ H con o] ... HHHHH

1 3 3 7 9 11 13 15 17 19 21 23 25 27 29 1 3 5 7 ¢ 11 13 {15 17 19 21 23 25 27 29

After fifth iteration After fortieth iteration

1 10]

9 9

8 8

7 7

6 6

5 5

4 4

3] | 3l HHH

2 2

i [HHHHHmHI—IH 0 Neann ! [H HHHHHH% HHHH

1 3 6§ 7 ¢ 11 13 15 17 19 21 23 25 27 29 1t 3 5§ 7 ¢ 11 13 15 17 19 21 23 25 27 29

Figure 11.10 Raw
altitude data and
data processed by
numeric constraint
propagation. For each
iteration, you obtain
a new value for each
point by computing

a weighted average
of the point's original
raw-data value and
the point’'s neighbors’
values during the

previous iteration.
. |

Constraint Propagation Achieves Global
Consistency through Local Computation

The overall objective of numeric-constraint-propagation procedures is to
find values that are consistent everywhere with some stipulated constraints.
When numeric-propagation procedures use constraints that link only a few
numbers in small neighborhoods, they are said to be doing local com-
putation. When constraints are satisfied everywhere, the consistency is
said to be global consistency. Hence, the point of numeric constraint
propagation is to achieve global consistency through local computation.

SUMMARY

®m Numeric constraint boxes propagate numbers through equations.

® One kind of numeric propagation operates on probability bounds at-
tached to various assertions connected together in an opinion net. Venn
diagrams help you to explain the constraints involved.

GENINFER Helps Counselors to Provide Precise Genetic Advice

Many people in artificial intelligence borrow heavily from other, more estab-
lished disciplines, probability theory in particular. One important example is
GENINFER, a system constructed to help genetic counselors provide advice to
prospective parents.

The purpose of GENINFER is to determine the likelihood that a future child
will have an inherited disorder. For the following family tree, GENINFER deter-
mines the probability that a future child will be a hemophiliac.

Great Great
grandmother grandfather

Great

Grandmother
uncle

Grandfather

I

Uncles

Brothers

Hemophilia is an interesting genetic disease because it is an example of a
recessive genetic defect carried on the X chromosome.

Females have two paired X chromosomes; males have one X chromosome
paired with a Y chromosome. Because the hemophilia defect is recessive and is
carried on the X chromosome, a female with one defective X chromosome can
pass on hemophilia, but shows no sign of the disease herself. If a male has a
defective X chromosome, however, he is a hemophiliac.

Every child inherits one of its mother’s X chromosomes, but which one is a
matter of chance. Thus, a female child of a carrier mother and a normal father
has a probability of 0.5 of becoming a carrier. A male child has a probability of
0.5 of being a hemophiliac.

Computing the probabilities for family trees, such as the one shown on the
previous page, is difficult, however, so many genetic counselors rely on coarse
approximations. GENINFER does not need to rely on approximations, because
it works out the exact probabilistic implications of all the facts. In the exam-
ple, GENINFER states that the probability that a future male child will be a
hemophiliac, given only the knowledge that the great uncle is a hemophiliac, is
12.5 percent, an uncomfortably high probability. Informed that there are three
normal uncles, GENINFER revises its calculations, and restates the probability
as only 2.8 percent. Finally, further informed that there are two normal brothers,
GENINFER concludes that the probability is only 0.7 percent, a comfortably low
probability. The following graph summarizes GENINFER’s calculations:

Nothing
known about
uncles and brothers

/

Uncles OK
nothing
known about
brothers

/ Both
uncles and

brothers OK

To do such calculations, GENINFER treats the family tree as a Bayesian
net and performs Bayesian probability analysis. Because GENINFER is intended
for interactive use, GENINFER uses a variety of program-optimization methods
to do the necessary calculations with acceptable speed.

Versions of GENINFER under development now go further in that they com-
bine traditional Bayesian analysis with reasoning modules that look for peculiar-
ities in the Bayesian analysis so as to identify probable errors in the construction
of the family tree.

248

Chapter

11 Numeric Constraints and Propagation

® Another kind of numeric propagation operates in altitude arrays. Lo-
cal constraints arbitrate between smoothness expectations and actual
data.

BACKGROUND

The discussion of probability bounds is based on the work of Ross Quinlan
(1983].

A system for propagating numbers through arrays is discussed in the
context of image understanding in Chapter 27.

Methods for dramatically increasing the speed of numeric constraint
propagation in the context of surface reconstruction from stereo images
have been introduced by Demetri Terzopoulos [1983).

Interestingly, simple nets of voltage sources, current sources, resistors,
and transistors can be modeled as numeric constraint nets. Thus, the pro-
cedure for propagating numeric constraints in nets, with generalizations,
can do certain kinds of electronic-circuit analysis. The generalized proce-
dure seems to work through circuits the way human engineers often do,
producing a similar analysis, as described, for example, in a landmark pa-
per by Richard M. Stallman and Gerald J. Sussman (1977].

The discussion of GENINFER is based on the work of Peter Szolovits
[1992].

Symbolic Constraints
and Propagation

In this chapter, you learn how symbolic constraint-propagation proce-
dures can determine the consequences of interacting constraints.

By way of illustration, you learn about a program that interprets draw-
ings, and about another program that finds relations among time intervals.

Once you have finished this chapter, you will know that, when a domain
is well understood, it is often possible to describe the objects in the domain
in a way that uncovers useful, interacting constraints. You will also know
how to use Marr’s methodological principles when you work on difficult
problems.

PROPAGATION OF LINE LABELS
THROUGH DRAWING JUNCTIONS

In this section, you learn about propagating symbolic labels through nets.
In particular, you learn about symbolic constraint propagation in the con-
text of understanding drawings of plane-faced objects, such as those in
figure 12.1. The main problem is to determine which lines are bound-
ary lines that separate objects. You see that boundary, convex, concave,
shadow, and crack lines come together at junctions in only a few ways, and
then you see that this restriction on junction combinations determines the
proper physical interpretation for each line in a drawing. Once correct line
interpretations are known, it is easy to use known boundary lines to divide

249

250 Chapter 12 Symbolic Constraints and Propagation

Figure 12.1 Part of drawing
analysis is to decide how each

line in a drawing should be
interpreted.

I’&

the drawing into objects. Along the way, you see that some impossible
drawings can be detected, because there is no way to interpret all the lines
consistently.

There Are Only Four Ways to Label a Line in
the Three-Faced-Vertex World

Consider a world populated by crack-free polyhedra with lighting arranged
to eliminate all shadows. The lines in drawings of this world represent
various naturally occurring edge types. A simple partitioning of these lines
is shown in figure 12.2.

All lines are divided into boundary lines and interior lines. Boundary
lines occur where one object face hides the other. The two regions in the
drawing separated by a boundary line do not abut along the boundary line.
Interior lines are those for which the two separated regions do abut one
another. The interior lines are those that are associated with concave edges
and those that are associated with convex edges.

For notational convenience, line interpretations are identified on draw-
ings by line labels. There are three such labels:

Line Label
Convex +
Concave -

Boundary >

You determine the direction of the boundary line label by noting which side
of the line corresponds to a face of the object causing the boundary line.
Imagine taking a stroll along the line, keeping the boundary-line object on
the right. The direction of walking is the direction of the boundary label.

There Are Only Four Ways to Label a Line in the Three-Faced-Vertex World 251

Figure 12.2 Drawings consist
of boundary lines and interior
lines. The interior lines may be
concave or convex.

Concave
edges

Figure 12.3 An L-shaped
solid illustrates the three basic
line interpretations: convex
lines, marked with plus labels;
concave lines, marked with
minus labels; and boundary
lines, marked with boundary

labels.
.]

Combinations of line labels surrounding junctions are called junction
labels. Natural constraints severely limit the number of junction labels
that are physically realizable.

It is easy to label each of the lines in figure 12.3 such that all the
junction labels are physically realizable by using your intuition. By so
labeling a drawing, you exploit your understanding of the physical situation
to arrive at interpretations for the lines. The key idea to pursue now is that
of turning the process around, using knowledge about allowable junction
labels to derive an understanding of the physical reality.

Accordingly, you need a catalog of physically realizable junctions. To
keep straight the distinction between a drawing and the actual physical
world, note that junctions in drawings denote physical vertexes in the
world, and lines denote physical edges.

252 Chapter 12 Symbolic Constraints and Propagation

Figure 12.4 The common

junctions. Those on the right
are excluded if vertexes are all \/
three-faced vertexes and there L

are no shadows or cracks.

Arrow Peak

<

Fork

h

Si

<A

Junctions can be categorized according to the number of lines coming
together and the size of the angles between the lines. Figure 12.4 assigns
mnemonic names to the common categories.

Fortunately, the following simple assumptions exclude all junctions
other than Forks, Arrows, Ls, and Ts:

® Limited line interpretations: There are no shadows or cracks.
® Three-faced vertexes: All vertexes are the intersection of exactly three

object faces. The vertexes at the top of the Great Pyramids of Egypt
are forbidden. The vertexes in figure 12.5 are allowed.

There Are Only Four Ways to Label a Line in the Three-Faced-Vertex World 253

Figure 12.5 Some objects
with exclusively three-faced

vertexes.
R

Figure 12.6 The criterion

of general viewing position
excludes both of these
configurations because any
perturbation of the viewing
position changes the junctions
indicated. On the left, you see
the front and top of a cube,

viewed without perspective.
L.]

9 e

B General position: The choice of viewpoint is such that no junctions
change type with a small change of viewpoint. The viewpoints in fig-
ure 12.6 are forbidden.

These assumptions are in force only temporarily; later, they will be relaxed.
The reason that these assumptions help you is that they reduce the number
of junction possibilities and hence the number of interpretations possible
for junction-surrounding lines.

Now, because there are four ways to label any given line, there must
be 42 = 16 ways to label an L. Similarly, there must be 43 = 64 ways
to label any particular Fork, Arrow, or T. Thus, the upper bound on the
number of junction labels is 208. Curiously, only 18 of these combinations
are physically realizable. It is not possible, for example, to find the junc-

254 Chapter 12 Symbolic Constraints and Propagation

Figure 12.7 Some junction
labels not found in drawings
of polyhedra with three-faced
vertexes.

il BN T

Y
A

tion labels of figure 12.7 in drawings of real polyhedral objects, given our
assumptions.

The next job is to collect the junction labels that are possible. There
are only six for Ls, five for Forks, four for Ts, and three for Arrows. Once
you have them, analyzing drawings is like working easy jigsaw puzzles.

There Are Only 18 Ways to Label a Three-Faced Junction

At first, it might seem crazy to think that you can build a junction catalog
containing all physically realizable junction labels by looking at every possi-
ble three-faced physical vertex from every possible direction. Fortunately,
forbidding all but general viewing positions makes the task manageable,
and assuming that drawings contain only three-faced vertexes makes the
task easy.

The three faces of any three-faced vertex define three intersecting
planes, and three intersecting planes divide space into eight octants, as
shown in figure 12.8. An object forming a vertex plainly must occupy one
or more of the eight octants so formed. Accordingly you can make a com-
plete junction catalog by a two-step process: consider all ways of filling up
eight octants with object material; and view each of the resulting vertexes
from the unfilled octants.

Of course, if no octants are filled, or if all are filled, then there is no
vertex, and consequently, there is nothing to consider. But suppose seven
of the eight are filled, as in the left half of figure 12.9. Evidently, the seven-
octant situation validates a Fork junction label in which each of the three
lines involved bears a minus label. Note that the only junction of interest
in the drawing is the one in the center. The surrounding drawing is only
a visual aid to understanding how the seven filled octants produce a single
drawing junction. Note further that, because seven octants are filled, there
can be only one octant from which to look at the vertex. The junction

There Are Only 18 Ways to Label a Three-Faced Junction 255

Figure 12.8 The three faces
of a three-faced vertex divide
space into eight octants. Here
the planes meet at right angles.

They need not.
|

Figure 12.9 Junctions seen
when seven octants are filled
or when one is. On the left,
the three concave lines are
seen, no matter where the
viewer stands within the one
available viewing octant. On
the right, the view from one
octant is such that there is a
Fork surrounded by convex

labels.
.]

type seen is a Fork, no matter what particular position is taken within the
viewing octant. Also, the planes forming the octants do not need to be at
right angles.

Fortunately, invariance within a viewing octant and indifference to
plane angle hold in general. The junction type does not change as the
viewpoint moves within one viewing octant or as the angles between the
planes change.

So far, the junction catalog has but one entry, a Fork. One new entry is
suggested by the right half of figure 12.9, in which the junction of interest is
surrounded again by a drawing that provides a visual aid to understanding
just what is filled and what is empty. From the point of view shown,

256 Chapter 12 Symbolic Constraints and Propagation

Figure 12.10 Stick figures
help to show what a one-

octant vertex looks like from T
various viewpoints. Because of
symmetry, the seven viewing

octants yield only three different L
labels. These three viewpoints R

yield one L and one Arrow.

Y
A\ 4

the vertex appears as a Fork junction with each line labeled with a plus.
Because only one octant is filled, however, there must be seven from which
to look, and so far you have seen only the junction label derived from the
octant diagonally opposite the stuff of the object.

Consequently, positions must be taken in the six other octants. Three
of these are the positions occupied by the stick figures in figure 12.10. Two
stick figures on stilts, shown in figure 12.11, occupy two positions above the
plane defined by the top of the cube. And one final stick figure, standing
on top of the cube, occupies the final position. All six stick-figure views
provide only two new junction labels, because three of the views produce
one kind of Arrow, and the other three produce one kind of L.

Now consider the situations with two, four, or six octants filled. All
are excluded by the initial three-faced presumption. Suppose, for example,
that two octants are to be filled. If the two were adjacent, then the edges
between them would be cracks, there would be four object faces at the
central vertex, and the vertex would not be three-faced. If the two filled
octants were not adjacent, then they would meet either along an edge or at
a common point. Either way, there would be more than three faces at the
central vertex. Similar arguments exclude the four- and six-octant cases,
leaving only the three- and five-octant cases to be considered.

There Are Only 18 Ways to Label a Three-Faced Junction 257

Figure 12.11 Stick figures
help to show what a one-
octant vertex looks like from
various viewpoints. Because of
symmetry, the seven viewing
octants yield only three different

labels.
L.]

T~

NEINERNS

In the three-octant case, each of the five viewing octants provides a
unique junction label, as shown in figure 12.12. Of course, one of the
viewing octants produces the view shown, which yields an Arrow. In one
of the other octants, the vertex looks like a Fork; in each of the other
three remaining octants, it looks like an L. Each of the L labels observed
is unique.

Figure 12.13 illustrates what five filled octants do. There are three
Jjunction labels, each of which is different from those seen before.

Finally, because cracks are forbidden, Ts can be labeled in only four
ways, all of which are consequences of partial occlusion. Thus, the total
number of ways to label a junction is now 18, as collected together in
figure 12.14.

Note that there are three junction labels in the Fork column that in-
clude boundary labels. All three could be considered rotated versions of
one another. Three distinct labels appear, to emphasize that there are
three distinct ways for a Fork to be labeled with boundary lines.

Now, all possible ways in which three-faced vertexes can be formed
have been enumerated, and you have viewed each such vertex from all
possible directions. You conclude that the 18 junction labels are all that
there can be. Any other label cannot correspond to a physically realizable
three-faced vertex.

258 Chapter 12 Symbolic Constraints and Propagation

Figure 12.12 If three octants
are filled, the remaining five
viewing octants each supply a
junction label. There are three
unique Ls, one Fork, and one

Arrow.
.

Figure 12.13 If five octants
are filled, the three viewing
octants supply two Ls and one

Arrow.
L.

Finding Correct Labels Is Part of Line-Drawing Analysis

Now let us examine examples showing how the junction catalog can be used.
At first, assume that each object is suspended in space. Consequently, each
object’s background border has only boundary labels. Also note that there
is only one kind of Arrow junction in the junction catalog that has boundary
labels on its barbs. For any such Arrow, the shaft must be labeled with a

Finding Correct Labels Is Part of Line-Drawing Analysis 259

Figure 12.14 Eighteen
junction configurations are
possible. Were it not for naturat

constraints, there would be 208.
.]

junctions

2

S
N

+
+

)

AL By
A4+ @7

S

plus. Furthermore, there is only one kind of Fork with any plus label. For
any such Fork, all the lines are forced to be labeled with plus labels.

Now consider the cube shown in figure 12.15. Because you are to
imagine that the cube is suspended in space, the lines bordering on the
background certainly can be labeled with boundary labels. Next, each of
the Arrow’s shafts is forced to be labeled with a plus because the barbs
already have boundary labels. Now, only the central Fork remains to be
investigated. Because all the Fork junction’s lines already have plus labels
assigned through previous considerations, it remains only to check that a
Fork with three plus labels is in the junction catalog. It is.

Now consider the slightly harder example in figure 12.16, which is a
sort of two-tiered, double L-shaped figure. Again, it is useful to begin
by labeling the background border. Then, it is easy to move toward the
interior using the Arrows with boundary labels on their barbs, together
with the fact that a plus on any Fork line forces two more plus labels. To

260 Chapter 12 Symbolic Constraints and Propagation

Figure 12.15 Labeling begins
by placing boundary labels
pointing clockwise on the border
of the drawing. Next, it is
usually convenient to label the
shafts of the Arrow junctions
whose barbs lie on the border.
In this example, a consistent
labeling of all lines is possible,

of course.
L

move still further, you must return to the junction catalog to pick up the
other two Arrow junction labels. These other two Arrow junction labels
force all of the remaining junction labeling, as shown.

Starting from interior junctions is more difficult. Unlike border lines,
internal lines can get any label. In general, some ambiguity remains until
analysis reaches a border, at which time the ambiguity is usually resolved.

The border seems important to human analysis of drawings as well.
Consider the example shown in figure 12.17. By covering up the sides and
a little of the top, you can see either a series of ordinary steps or a row of saw
blades. This ambiguity may occur because the interior junctions, separated
by occlusion from the powerful border constraints, undergo reversals in
which concave, minus labels, switch with convex, plus labels.

Thus, symbolic constraint propagation offers a plausible explanation
for one kind of human information processing, as well as a good way for a
computer to analyze drawings. This idea suggests the following principle:

The principle of convergent intelligence:

> The world manifests constraints and regularities. If a
computer is to exhibit intelligence, it must exploit those
constraints and regularities, no matter of what the com-
puter happens to be made.

It is also interesting that the theory is useful not only in analyzing normal
drawings, but also in identifying illegal drawings— those that cannot cor-
respond to real objects. The drawing in figure 12.18 is illegal, a conclusion
you can reach through a labeling argument. Proceeding as before, back-
ground lines, Arrow junctions with plus-marked barbs, and Fork junctions
with plus labels can be exploited as shown. But now one Jjunction is ille-
gally labeled. The Arrow on the end of one arm insists on a minus label for
that arm, whereas the Fork on the other arm demands a plus label for that
arm. But because there is no L with one minus arm and one plus arm, the
drawing cannot be a view of a polyhedron with three-faced vertexes.

Finding Correct Labels Is Part of Line-Drawing Analysis

261

Figure 12.16 Labeling of this
two-tiered figure begins with the
background border. Next the
shafts of the border Arrows
begin a propagation of plus
labels that continues through

all Forks encountered. The rest
of the job requires use of two
other Arrow junctions found in

the junction catalog.
L]

262 Chapter 12 Symbolic Constraints and Propagation

Figure 12.17 The back-
ground border contributes con-
siderable constraint to line-
drawing analyses. If the border
of this object is covered up, the
disconnected central portion is
perceived in a variety of ways.

Figure 12.18 An impossible
object. The indicated junction is

not among the legal ones.
L .
<= Not possible

Waltz’s Procedure Propagates Label
Constraints through Junctions

Now you are ready to learn about Waltz’s procedure, a powerful pro-
cedure for propagating symbolic constraints. To see how Waltz's proce-
dure works, first consider the drawing-labeling problem abstractly, in fig-
ure 12.19, without getting into the details of the actual labels. Think of
keeping piles of label possibilities for each junction. These piles are created
when a junction is visited for the first time, and they are reexamined each
time an adjacent junction pile is altered.

In the illustration, junction A is the first junction visited, so you pile on
A all of the label possibilities allowed from the junction catalog, as shown
in the upper left of figure 12.19.

Now suppose junction B is the next junction visited. Again, you pile
on junction labels, but the total set is reduced immediately to those that

Waltz’s Procedure Propagates Label Constraints through Junctions

263

(a)

(d)

Figure 12.19
Label propagation in
networks. At first, an
initial junction pile is
placed at an arbitrary
junction. Propagation
continues as long

as reduction occurs
at each junction pile

encountered.
L |

are compatible with at least one junction in the piles of all neighboring
junctions with piles. In figure 12.19, junction A’s label pile constrains
what can be in junction B’s pile.

Once a pile is created and has been reduced by neighboring piles, it is
time to see whether those same neighboring piles contain junction labels
that are incompatible with every junction label at the newly installed pile.
In figure 12.19, the reduced pile at junction B constrains what can be in
the pile at junction A.

Once set in motion, constraint propagation continues as long as the
junction piles encountered continue to be reduced. In figure 12.19, for
example, after the junction pile at junction C is installed and reduced,
the outward-moving part of the process starts, travels through the pile at
junction B, and terminates at the pile at junction A.

If there were no change at junction B, the propagation initiated at
Jjunction C would have terminated at junction B. On the other hand, if there

264 Chapter 12 Symbolic Constraints and Propagation

Figure 12.20 An example
illustrating constraint propaga-
tion in drawings. Junction A is
visited first, followed by B, C, C
and D. The Arrows placed at

A limit the choices for Ls at B,
which in turn limit the choices
for Arrows at C. At C, automatic
neighbor reexamination has an
effect, eliminating all but one
label at B and A. Finally, the C
boundary label limits the Fork
choices at D to the one shown.
L]

already were label piles at all junctions in the illustration, a pile reduction
at junction C could initiate a propagation series that would travel all the
way around the loop, reduce the piles at each junction, and ultimately lead
to further reduction at junction C, the junction where the round-the-loop
propagation was initiated. Looping cannot continue forever, however.

Now let us move from the abstract to the concrete. Look at figure 12.20,
in which two Arrows, a Fork, and an L are buried in a drawing. Suppose,
further, that these four junctions are lifted out of the drawing and are
analyzed with the plus, minus, and boundary line labels.

If junction A is the first junction visited and none of its neighbors have
been visited, then the first step is to bring in all the possible Arrow junction
labels, piling them on junction A.

Waltz’s Procedure Propagates Label Constraints through Junctions 265

Suppose junction B is the next junction investigated. There are six
junction labels for Ls in the junction catalog, but only two of these are
compatible with the possibilities known for the adjacent Arrow, junction
A. The other four are therefore rejected immediately.

After labels are placed at junction B, the next step is to investigate the
neighboring junctions that have been examined previously to see whether
any junction labels can be thrown out because of the new labels at junction
B. For this situation, nothing happens, because all three of the Arrow
junction labels at junction A are compatible with one of the two L labels
at junction B.

Moving on to junction C, the junction catalog supplies three entries as
before; for this Arrow, however, only one is compatible with the neighbors
already analyzed. The other two are rejected immediately.

The last time the neighbor of a newly visited junction was revisited,
nothing happened. This time, however, looking afresh at junction B reveals
that only one of the two remaining junction labels is compatible with the
adjacent Arrow, junction C. The list for junction B having been revised,
the adjacent Arrow, junction A, must be revisited as well. Of the three
original possibilities, only one survives.

Finally, looking at the Fork, junction D, the constraints from either
of its analyzed neighbors force all but one of the five Fork entries in the
junction catalog to be rejected.

Thus, the constraint is sufficient to interpret each line uniquely in this
group of four junctions, even though the group is lifted out of its surround-
ing context and is analyzed separately.

Of course, one way to implement Waltz’s procedure is to use demons
reminiscent of those in the arithmetic constraint nets introduced in Chap-
ter 11. To see how that would work, first consider the following specification
for a contraction net.

A contraction net is a representation
That is a frame system
In which

> Lexically and structurally, certain frame classes iden-
tify a finite list of application-specific interpreta-
tions.

> Procedurally, demon procedures enforce compatibil-
ity constraints among connected frames.

Starting with contraction nets, it is easy to specify a labeled draw-
ing. Here is one such specification—one that happens to be limited to the
original four line labels:

266 Chapter 12 Symbolic Constraints and Propagation

Figure 12.21 without
shadows, there are several
ways to interpret a cube: It

may be suspended, it may be

supported by the floor, or it may

be attached to a wall.

/

A labeled drawing is a representation

That is a contraction net
In which

>

Lexically, there are line frames and junction frames. Lines
may be convex, concave, or boundary lines. Junctions
may be L, Fork, T, or Arrow junctions.

Structurally, junction frames are connected by line frames.
Also, each junction frame contains a list of interpretation
combinations for its connecting lines.

Semantically, line frames denote physical edges. Junction
frames denote physical vertexes.

Procedurally, demon procedures enforce the constraint
that each junction label must be compatible with at least
one of the junction labels at each of the neighboring junc-
tions.

Many Line and Junction Labels Are Needed to
Handle Shadows and Cracks

So far, by assumption, all the examples involve objects that are hanging
suspended in space. If a cube is resting on a table, however, the bottom
lines represent concave edges; they do not represent boundaries. If a cube
is stuck against a wall, as figure 12.21 shows, other lines represent concave
edges. Without an additional clue or assumption, several interpretations

are equally plausible.

INlumination Increases Label Count and Tightens Constraint 267

Figure 12.22 Shadows help
determine where an object rests

against others.
L]

Note, however, that introducing shadows resolves the ambiguity. The
block in the middle of figure 12.22 definitely seems supported by a horizon-
tal surface, whereas the ones to the left and right, although less familiar,
seem attached vertically. Evidently, expanding labeling theory to include
labels for shadows should add further constraint and reduce ambiguity.

Take note that the shadow labels introduced in figure 12.22 indicate
a direction, just as boundary labels do: shadow labels are small arrows
placed so that they point into the shadowed region.

Now let us reconsider concave lines. Because concave lines are often
found where objects come together, the concave-label category can be split
into subcategories, indicating the number of objects involved and identi-
fying which object is in front. Suppose a concave edge represents a place
where two objects come together. Then, imagine pulling apart the two
objects slightly. The concave edge becomes a boundary edge with the label
pointing in one of two possible directions, as shown on the left and in the
middle of figure 12.23. The two possibilities are indicated by compound
symbols made up of the original minus label and the new boundary label.
If, by chance, there are three objects, again a compound symbol is used,
reflecting what is seen when the objects are pulled apart, as shown on the
right in figure 12.23.

Cracks lying between two objects can be treated analogously: Each
crack is labeled with a ¢, together with a boundary label that indicates
how the two objects involved fit together. With cracks between objects
allowed, you have the possibilities shown in figure 12.24. There are now 11
ways that any particular line may be labeled.

lllumination Increases Label Count and Tightens Constraint

The illumination on any face of an object can be classified, as shown in fig-
ure 12.25, as directly illuminated, shadowed by another ob ject, or shadowed
because it faces away from the light. The three possibilities are denoted by
I, for directly illuminated, S for shadowed by another object, and SS for
facing away from the light—that is, self-shadowed.

Line labels can carry knowledge about these illumination states in ad-
dition to information about edge type. If the illumination states and line
interpretations were to combine freely, there would be 32 = 9 illumination

268 Chapter 12 Symbolic Constraints and Propagation

Figure 12.23 Concave
edges often occur where two
or three objects meet. It is
useful to distinguish among the
possibilities by combining the
minus label with the one or two
boundary labeis that are seen

when the objects are separated.
L]

el f
= F

T

Figure 12.24 The eleven
line interpretations and the

corresponding labels.
L]

Concave
edges

Hluminatijon Increases Label Count and Tightens Constraint 269

Figure 12.25 lllumination
information often provides
useful constraint. If there

is a single light source, it is
convenient to recognize three
surface categories: illuminated:
shadowed by intervening
objects; and self-shadowed by
virtue of facing away from the

light source.
C]

Iltuminated

llluminated

Iluminated

combinations for each of the 11 line interpretations, giving 99 total possi-
bilities. Only about 50 of these combinations, however, are possible. Some
combinations are forbidden because they would require an incredible coin-
cidence, like the projection of a shadow line exactly onto a concave edge.
Other combinations are excluded by definition; there cannot be, for exam-
ple, a combination in which both sides of a shadow line are illuminated.

Now, let us review. Initially, only basic lines were considered: boundary
lines, and interior concave and convex lines. Then, shadows were added.
Concave lines were split up to reflect the number of objects coming together
and the way those objects obscure one another. Cracks between objects
were introduced and handled analogously. Finally, line information was
combined with illumination information. Just over 50 line labels emerge
from this final expansion.

These changes make the number of physically realizable junctions large,
both for the original Fork, Arrow, L, and T types, and for other vertex
types allowed by relaxing the three-faced-vertexes and general position con-
straints. What is gained in return for this increased number?

First, consider how the set of physically realizable junction labels com-
pares to that of the unconstrained junction labels. The following table
gives the results for the original set of line labels:

Vertex Number Number Ratio

type of unconstrained of physically (%)
possible junctions realizable junctions

L 16 6 37.5

Fork 64 7.8

5
T 64 4 6.2
Arrow 64 3 4.7

270

Chapter

12 Symbolic Constraints and Propagation

The percentages shown all indicate constraint, but they do not indicate
extraordinary constraint. When the line categories are expanded, however,
all numbers grow large and the constraint becomes incredible. The number
of junction labels in the expanded set, known as Waltz’s set, is large
absolutely, but the number is small compared with what it might be:

Vertex Approximate number Approximate number Ratio
type of unconstrained of physically (%)
possible junctions realizable junctions

L 2.5 x 108 80 3.2

Fork 1.2 x 10° 500 4.0 x 107!
T 1.2 x 105 500 4.0 x 107!
Arrow 1.2 x 10% 70 5.6 x 1072
Psi 6.2 x 10° 300 48x1073
K 6.2 x 10° 100 1.6 x 1073
X 6.2 x 108 100 1.6 x 1073
Multi 6.2 x 106 100 1.6 x 1073
Peak 6.2 x 108 10 1.6 x 1074
Kk 3.1 x 108 30 9.6 x 10°°

Figure 12.4 shows what all these junction types look like. For the Kk
Junction, only about one junction label in 10 million is physically realizable.
To be sure, the total number of labels has increased to a size too large to use
by hand, but still the constraints are so extreme that a computer program
using the large set can converge on an unambiguous solution.

In this progression from small set, large fraction to large set, small
fraction, you can observe the following powerful idea at work:

The describe-to-explain principle:

> The act of detailed description may turn probabilistic reg-
ularities into entirely deterministic constraints.

The Flow of Labels Can Be Dramatic

Watching a film is the best way to appreciate what can happen when
Waltz’s set, instead of the dwarfish set for the three-faced vertex world, is
used to label a drawing.

Lacking a film, glancing at the drawing in figure 12.26 and at the
trace in table 1 provides some feel for how the Waltz procedure works with
Waltz’s set. It would be tedious to follow the trace in detail, but some
overall points are obvious without much effort.

In each of the 80 steps, the step number is followed by a letter denoting
the junction involved. The letter is followed by the old number of junction
labels in the pile and the new number in the pile.

The Flow of Labels Can Be Dramatic

271

Figure 12.26 A drawing
analyzed successfully by

Waltz’s labeling procedure.
L]

Table 1. A trace of Waltz's

labeling procedure in action.
L]

00 I O UL s W N -

CON N DNDINNDNINDNDR R ok e e e 2
SO QOO0 Uk WNEHO LI A WN~=O P
HToEHEQEHOEHT OO NCOEEHPIQUITOO I >

123

79
76

388
52
32

79
78
34
26

79
15

123

593
42
28
33
14
11
18

L T T A A A A A A O A A A

123
76
79
52
32

388
78
34
26
79
15
20
14
20
79
33
14

123
28

593
42
18
11

— = e N

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

U000 ZZAPWINZRE 2 " CRPONUR RGN~ = D> I A

20
14
20
79
123
593

79

593

LS S |

L A A e e e A O A A A A A

593

123

79

~
= O N NN

123

593

79

593
12

593

=== s

-3
-

123

-~
[SAREN<IN)

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TS H-HNNOR ST TR L0000

123

Tt W L

388
20

1391

!

L A A A A O T I i A A A

123

=

123

BN = = On

388

123

e Y

272

Chapter

12 Symbolic Constraints and Propagation

Note that the border junctions are visited first. This order exploits
the extra constraint available at the border. Further inspection shows that
convergence is rapid. After only two or three visits, most of the junctions
have only one unique junction label associated with them. In step 74, for
example, junction S starts with 1391 possibilities. The number is reduced
to 5 by constraints coming in from one neighbor. Then, constraints from
another neighbor reduce the number to 1, leaving but a single interpreta-
tion.

The Computation Required Is Proportional to Drawing Size

Experiments using Waltz’s set show that the work required to analyze a
drawing grows in roughly linear proportion with the number of lines in the
drawing. To see why, informally, suppose that drawings can be split into
areas of more or less fixed size in terms of the lines and junctions contained
in each area. If the areas are such that constraint does not flow across
their frontiers, then the total time required to analyze a drawing is linearly
proportional to the number of areas, and hence is linearly proportional to
the number of junctions.

Flow-impeding frontiers exist because the T junctions, common at ob-
Ject boundaries, have little ability to transmit constraint: An obscuring
boundary can lie in front of any kind of edge.

PROPAGATION OF TIME-INTERVAL RELATIONS

In this section, you learn about another example of symbolic constraint
propagation; this one involves time intervals and the relations among time
intervals. The general idea is to use existing information about the rela-
tions among time intervals to reach conclusions about other relations. For
example, if interval A is before interval B, and interval B is before interval
C, then plainly interval A has to be before C.

Time relations are easier to understand visually, especially as they
become more complicated. As shown in the upper part of figure 12.27, time
intervals can be depicted as objects resting on a time line. Alternatively,
as shown in the lower part of figure 12.27, a pair of time intervals and the
relation that lies between them can be depicted as two nodes, and a labeled
link.

There Are 13 Ways to Label a Link between
Interval Nodes Yielding 169 Constraints

Assuming that no interval is allowed to start and stop at the same time,
then the interval before relation is just one of 13 possible relations between
two intervals, seven of which are shown in figure 12.28. The other six are
members of symmetric pairs. One such symmetric pair is the before pair,
because interval A may be before interval B or interval B may be before
interval A.

273

Figure 12.27 Two time
intervals and the relation
between them. In the upper
part, two time intervals are
shown as objects resting

on a time line, with the

object representing interval A
preceding the one for interval B.
In the lower part, the two time
intervals are shown as nodes,
and the relation between them

is expressed as a link label.
L |

FRRRReReRn >
[rasessessseessss] -~
~

—>

before

Notationally, an arrow is drawn over each label to indicate the direction
in which a relation is to be read. Thus, A before B means interval A is

before interval B, whereas A before B means interval B is before interval
A. Attaching arrows to labels is necessary, rather than making the links
directional, because several labels, with arrows in opposite directions, may
be attached to one link.

Using this notation, figure 12.29 illustrates the idea that the labels on
each of a pair of links can constrain the labels on a third link. As shown,
three interval nodes are involved, one of which lies between the two links
in the link pair. The third link—the one constrained—spans the other two
interval nodes.

If two before labels point in the same direction, the constraint is severe,

allowing only a before label on the spanning relation. Curiously, however,

if the before labels both point toward the central interval, there is no con-
straint whatsoever, because all the 13 ways of labeling the spanning relation
remain possible.

Of course, there are 13 x 13 = 169 pairs of relations that can connect
interval A to interval B and interval B to interval C. The key idea is that
each such pair, joined at the central interval, interval B, has something
to say about which relations can possibly connect interval A directly to
interval C. Just what each pair has to say is something you can work out
on the back of an envelope or two, producing the table shown in figure 12.30.

All the constraints captured by the tables in figure 12.30 can be en-
forced, of course, by way of demon procedures in an interval net, which
is a special kind of contraction net:

274 Chapter 12 Symbolic Constraints and Propagation

Figure 12.28 Seven of
the 13 possible relations
between two time intervals. The

remaining six relations reverse A
the meaning of the first six
relations shown here, allowing, B

for example, interval A to be
before interval B, or interval B
to be before interval A.

during

l
&

finishes

O
}
(&

H

is equal to

Time Constraints Can Propagate across Long Distances 275

Figure 12.29 in the top half,
interval A is before interval B,
and interval B is before interval
C. These relations force the
conclusion that interval A is
before interval C. On the other
hand, as shown in the bottom
half, nothing can be concluded
about the relation between
interval A and interval C given
only that interval A is before
interval B and interval C is

before interval B.
|

An interval net is a representation

That is a contraction net
In which

> Lexically and semantically there are interval frames de-
noting time intervals and link frames denoting time re-

lations, specifically before, before, during, during, overlaps,

overlaps, meets, meets, starts, starts, finishes, finishes, and
—_—_—

———
is equal to.

> Structurally, interval frames are connected by link frames.

> Procedurally, demon procedures enforce the constraint
that the interpretations allowed for a link frame between
two intervals must be consistent with the interpretations
allowed for the two link frames joining the two intervals
to a third interval.

Time Constraints Can Propagate across Long Distances

Given a chain of relations, it may be possible to use the table in figure 12.30
to reach a long-distance conclusion about the relation between two widely

276 Chapter

Figure 12.30 Half of the
table constraining the labels
between X and Z when the
labels between X and Y (the
rows) and between Y and Z
(the columns) are known. So
as to fit the table on two book-
sized pages, all labels are
abbreviated by their first letter.
x is a shorthand for o, s, d, and
f. Empty entries correspond to
no constraint; ali 13 labels are

possible.
L

12 Symbolic Constraints and Propagation

b mW|o| s |d|FT|b|wm|le|s|9|T
= | = o o | = =] = - | = | 5 | = | —
b | b|b| b | b | b |b b] b! b | b | b

m | m m| m
- | = - | =
o | o o | O
- | = - | =
s | s S | s
— | — — | —
d | d d | d
m]lb|b|bo |®m|o|o|D!T|%|m ®
— | = | = | | =
s | s | m | f | 7§
— | — —
d| d|9l=1|4d
—
S
—
d
|b|b|bv|T|T|T|b|o|R|T|® b
m T|IT|m|s|x|d|®m|m
— =T T = | = S | = | =
0 d | d|oid ;=]t/ 0|0
s K]
— ——
d f
|l |v|bv|T|d|d | | m|d|FT | b!lD
m T| s |m|m
) 9 |= || 7
—
d
—
f
d|v|b|b|d|d|d|v (% |d|d)
m T m
o 5 | o)
s m|m B
d | o d
flo|m|o|d|d|FT|Dv | b |D (B |B|T
— — | = | « |
s m | m | m| f
prd — | = |
d o | o | o |-=
—
S
—
d

separated intervals. Figure 12.31 shows how. First, the pair of relations
connecting interval A, interval B, and interval C enable a conclusion about

which relations can connect interval A to interval C.
Next, the relation that connects interval A to interval C is used in

concert with the relation that connects interval C to D to determine which
relations can connect interval A to D. Continued iteration may eventually
provide some constraint on the relation between interval A and Z.

A Complete Time Analysis Is Computationally Expensive 277

T lm|s|s|d|T|o|m|lo|s|d]|T
Figure 12.30 Continued. pom p— — T T — 1 — —
g b d|d|d|d ®|B|D|b|D|b|b
The other half of the table S|S0 S S
constraining the labels between f_ f_ f_ f_
X and Z when the labels L
between X and Y (the rows) mimr|my
and between Y and Z (the S L O
columns) are known. mlo|sg|d|d|d|m|2|b|D|D|b M@
P — — ryd vy ryd
0 s f f f
m|= |9 |9 |
d
T
s|vle|x|d|d|e|D|l% | D |b|D|T
mld|x| T T m|m | m|s
| fl=]%|% o |l9 |9 |d
— —
d s
T]
— - — — — - — — — — — — by
S b o [5) S d o b m 5] S d d
— — — — —
m d d S f
T T = |9
q
T
9l |e|s|o|x|9|b|9|o|d|d|d
mld|d|d K |a|m|s|T
| TIT|F|=|s |9 |d]|d
a q
0 s
Tl |®m|o|o|o|FT|b |9 |e|d|d|T
N I T -
dl=|%|d|d
‘s
q

A Complete Time Analysis Is Computationally Expensive

Now suppose you want to do a complete analysis, ensuring that you have
used whatever link labels are given to determine the absolute minimum
number of labels at every link in a net of n time intervals.

Because you are free to place a link between any two nodes, if there are
n nodes, there can be as many as n —1 links emerging from each. Avoiding
double counting by dividing by two, there must be 1‘—)(%2 links.

For each link between two nodes, there are n — 2 other nodes that can
serve as a central interval. Thus, there are n — 2 link pairs that can, in

278 Chapter 12 Symbolic Constraints and Propagation

Figure 12.31 A chain of

time-interval relations labeled betod oo oo ol
before enables the placement _ I
/ P - g - - - o
~ — - -

of other before labels, including

RN before l/)efore/ _before __ — before
the placement of a before label T T
between the ends of the chain. Pt
L] -

principle, force a reduction in the number of labels on a link. Each time
you cycle through all the links, you have to examine Mg—_ll x (n —2) link
pairs.

If no labels are eliminated during a cycle, you stop. But if any labels
are eliminated, you have to continue.

In the worst case, only one label of one link is eliminated during a

cycle. Because each of the %ﬁ links may have as many as 13 labels,
you may have to cycle through all the links, in the worst case, 13 x m;’;lz
times. Thus, the worst-case number of pair examinations is 13 x m;—_ll X
%ll X (n — 2), which is order n. This is not good if n is large.

Reference Nodes Can Save Time

Because a complete time analysis is computationally expensive, it may
be important to single out some of the time-interval nodes to serve as
reference nodes. When you want to determine the possible labels on a link
between two given interval nodes, you start by looking for paths between
the two nodes such that all links, except for the first and last, must connect
reference node pairs. Then you collect all the nodes in all such paths and
perform a complete analysis using those nodes.

Suppose, for example, that you single out interval nodes that represent
the morning and the afternoon. Further suppose that each is connected to
three other nodes as shown in figure 12.32.

Next, suppose you want to know the possible links between interval X,
attached to the morning node, and interval Y, attached to the afternoon
node. There is only one path between them through interval nodes, and
that path happens to contain four nodes. Accordingly, you need to do
a complete analysis of only a four-node, six-link net. Without reference
nodes, you would have to do a complete analysis of an eight-node, 28-link
net.

Of course, there is a price for confining your analysis to reference nodes:
you may overlook a constraint now and then. Generally, however, with
carefully selected reference intervals, little or nothing is lost.

Five Points of Methodology

Figure 12.32 Reference
nodes can reduce dramatically Morning
the amount of computation
required to do constraint
propagation. As shown in the
upper part, only the nodes

on reference-node paths are
considered. As shown in the
lower part, an analysis involving
the four reference-path nodes
quickly indicates that interval X
is before interval Y.

Morning Afternoon

meets
<—
before during
before betore °

FIVE POINTS OF METHODOLOGY

History shows that many of the methods of artificial intelligence are like
sirens, seducing you into misapplication. Consequently, to keep yourself
focused on solving problems, rather than on showing off particular methods,
you should follow Marr’s methodological principles—those championed by
the late David Marr:

To follow Marr’s methodological principles:

> First, identify the problem.

> Then, select or develop an appropriate representation.
> Next, expose constraints or regularities.

> Only then, create particular procedures.

> Finally, verify via experiments.

You can easily imagine that the original developers of drawing-analysis
and interval-calculation procedures could have followed such methodologi-

280

Chapter

12 Symbolic Constraints and Propagation

cal principles; in both cases, there is a clearly identified problem, a carefully
worked-out representation, and exposed constraints. Furthermore, in both
cases, there were implemented procedures that enabled convincing experi-
ments to be performed.

SUMMARY

In general terms, symbolic constraint boxes propagate information that
is used to reduce the sizes of collections of possible interpretations.

In line drawing analysis, for example, information propagating along
lines and through junctions leads to a steady reduction in the number
of interpretations possible for the connected junctions.

There are only four ways to label a line in the three-faced-vertex world:
as a convex line, a concave line, or a boundary line with two possible
orientations. The three-faced-vertex world permits only 18 ways of
arranging such line labels around a junction.

Waltz’s procedure propagates label constraints by eliminating all junc-
tion labels at each junction that fail to be compatible with at least one
junction labeling at each neighboring junction.

Many additional line and junction labels are needed to handle shadows
and cracks. Illumination also increases label count.

In the world of time intervals, there are 13 ways to label a link between
interval nodes, yielding 169 possible constraints on links that bridge
link pairs. These constraints can propagate time information across
long distances.

A complete time analysis is computationally expensive, but much of
the expense can be avoided if reference nodes are used, albeit with
some reduction in capability.

The world manifests many constraints and regularities. For a computer
to exhibit intelligence, it is necessary to exploit those constraints and
regularities no matter of what the computer happens to be made.
The act of detailed description may turn probabilistic regularities into
deterministic constraints.

Marr’s approach specifies five steps. First, you identify the problem.
Then, you select or develop an appropriate representation. Next, you
expose constraints or regularities. After that, you create particular
procedures. Finally, you verify via experiments.

BACKGROUND

Early ad hoc methods for line-drawing analysis, such as those developed
by Adolfo Guzman [1968], stimulated much of the subsequent work on
line-drawing analysis, including David Waltz’s seminal thesis on drawing
analysis, on which this chapter is largely based [Waltz 1972]. Waltz dealt

Background 281

not only with the labeling scheme explained here, but also with similar
schemes involving line and surface directions. David Huffman [1971] and
Maxwell Clowes {1971], working independently, devised labeling schemes
directly antecedent to Waltz’s. Their work was limited to the simplified
domain of three-faced vertexes with no shadows. Later work by Alan K.
Mackworth shows how constraints like Waltz’s can be derived automatically
[Mackworth 1973]. Subsequently, the work of Kokichi Sugihara has come
to be regarded as a tour de force [Sugihara 1978].

The idea of using constraint propagation to reason about time was
introduced in a seminal paper by James Allen [1983].

For an interesting use of symbolic constraint propagation in quite an-
other domain, see the work of Mark Stefik on a program that plans gene-
cloning experiments in molecular genetics [1980]. For a domain-independent
treatment of symbolic constraint propagation, see the work of Eugene C.
Freuder [1978, 1982].

The development of the PROLOG programming language can be viewed
as an effort to design a programming language around the idea of constraint
expression. PROLOG programmers try to express only knowledge, rather
than precise prescriptions of how knowledge is to be used. More often,
however, PROLOG is viewed as a programming language based on logic.
For an excellent introduction to PROLOG, see PROLOG Programming for
Artificial Intelligence, by Ivan Bratko [1986).

Logic and
Resolution Proof

In this chapter, you learn about logic, an important addition to your
knowledge of problem-solving paradigms.

Like the other paradigms, logic has both seductive advantages and
bothersome disadvantages. On the positive side, the ideas of logic, having
matured for centuries, are concise and universally understood, like Latin.
Moreover, until recently, logicians have focused on proving theorems about
what can be proved. Consequently, when a problem can be attacked by
logic successfully, you are in luck, for you know exactly what you can and
cannot do.

On the negative side, logic can be a procrustean bed, for concentrating
on logic can lead to concentrating on the mathematics of logic, deflecting
attention away from valuable problem-solving methods that resist mathe-
matical analysis.

First, you learn how to handle the notation used in logic; building
on that notation, you see how rules of inference, such as modus ponens,
modus tolens, and resolution, make it possible to create new expressions
from existing ones. Then, you explore the notion of proof, and you use
proof by refutation and resolution theorem proving.

In the course of learning about logic, you are exposed to a blizzard of
new concepts. Accordingly, the key points in this chapter are illustrated
with ridiculously simple examples designed to keep human intuition fully
engaged. These examples stick to the blocks world, showing how one rela-
tion can be deduced from others.

283

284

Chapter

13 Logic and Resolution Proof

RULES OF INFERENCE

You know that something is a bird if it has feathers or if it flies and lays
eggs. This knowledge was expressed before, in Chapter 7, in the form of
if-then rules:

13 If the animal has feathers
then it is a bird

14 If the animal flies
it lays eggs
then it is a bird

In this section, you see the same sort of knowledge expressed in the language
of logic, and you learn about the rules of inference that make it possible to
use knowledge expressed in that language.

Logic Has a Traditional Notation

In logic, to express the sense of the antecedent—consequent rule concerning
feathers and birds, you need a way to capture the idea that something has
feathers and that something is a bird. You capture such ideas by using
predicates, for predicates are functions that map object arguments
into true or false values.

For example, with the normal way of interpreting the object Albatross
and the predicates Feathers and Bird, you can say, informally, that the
following are true expressions:

Feathers(Albatross)
Bird(Albatross)
Now suppose you say that the following is a true expression:
Feathers(Squigs)

Evidently, Squigs is a symbol that denotes something that has feathers, con-
straining what Squigs can possibly name, for Squigs satisfies the Feathers
predicate.

You can express other constraints with other predicates, such as Flies
and Lays-eggs. In fact, you can limit the objects that Squigs can name to
those objects that satisfy both predicates together by saying that both of
the following expressions are true:

Flies(Squigs)
Lays-eggs(Squigs)
There is a more traditional way to express this idea, however. You simply

combine the first expression and the second expression and say that the
combination is true:

Flies(Squigs) and Lays-eggs(Squigs)

Logic Has a Traditional Notation 285

Of course, you can also insist that Squigs names something that satisfies
either of the two predicates. You specify this constraint as follows:

Flies(Squigs) or Lays-eggs(Squigs)
Logicians prefer a different notation, however. They like to write and as &

and oras V.
Now you can rewrite the expressions you wrote before, recasting them
as a logician would write them:

Flies(Squigs)&Lays-eggs(Squigs)
Flies(Squigs) V Lays-eggs(Squigs)

When expressions are joined by &, they form a conjunction, and each
part is called a conjunct. Similarly, when expressions are joined by V,
they form a disjunction, and each part is called a disjunct.
Note that & and V are called logical connectives because they map
combinations of true and false to true or false.
In addition to & and V, there are two other essential connectives: one
is not, written as —, and the other is implies, written as =>. Consider this:
—Feathers(Suzie)

For this expression to be true, Suzie must denote something for which
Feathers(Suzie) is not true. That is, Suzie must be something for which
the predicate Feathers is not satisfied.

Moving on, using =, here is an expression that resembles one of the
antecedent—consequent rules:

Feathers(Suzie) = Bird(Suzie)
Saying that the value of this expression is true constrains what Suzie can
denote. One allowed possibility is that Suzie is something for which both
Feathers(Suzie) and Bird(Suzie) are true. Naturally, the definition of =
also allows both Feathers(Suzie) and Bird(Suzie) to be false. Curiously,
another possibility, allowed by the definition of =, is that Feathers(Suzie)
is false but Bird(Suzie) is true. If Feathers(Suzie) is true and Bird(Suzie) is
false, however, then the expression Feathers(Suzie) = Bird(Suzie) is false.

Perhaps it is time to be more precise about the =, &, Vv, and - con-
nectives, before it is too late. Thinking of them as functions, it is easy to
define them by listing the approved value for each possible combination of
arguments. Such a list is shown in figure 13.1, which contains diagrams
that are called truth tables.

Note that the connectives have an accepted precedence. In ordinary
arithmetic, a unary minus sign has precedence higher than that of a plus
sign, so you can write —a + b, meaning (—a) + b, not —(a + b). Similarly,
because — has precedence higher than that of Vv, you can write ~E; V Ej,
meaning (—F;) V E,, without any possibility of confusion with —(E; V E3).

TActually, most logicians write and as A, instead of as &. In this book, & is used
because it is easy for beginners to distinguish & from V.

286 Chapter 13 Logic and Resolution Proof

Figure 13.1 Truth tables
show what =, &, Vv, and —

do. E2
]

True False

E1 = E2 E1 True True False

False True True

True False

E1 & E2 E1 True True False
False False False
Es

True False

E1 v E2 E1 True True True
False True False

-E True Faise
E

False True

The accepted precedence is — first, followed by & and Vv, with = bring-
ing up the rear. A good habit is to use parentheses liberally, even when
not strictly necessary, to reduce the likelihood of a mistake.

Note that the truth-table definition for = indicates that the values
of Ey = E, are the same as the values of —=F; V E, for all combinations
of values for Ey and F,. Consequently, and important to note, =F; V E,
can be substituted for E; = E», and vice versa, at any time. Rules for
reversible substitution are expressed by a < symbol:

Ey= E & -EVE

Truth tables also demonstrate other useful properties of logical connectives,
which are listed here, partly for the sake of completeness and partly because

Quantifiers Determine When Expressions Are True 287

you need some of them to deal with forthcoming examples. First, the &
and V connectives are commutative:

E\& By & FR&F,
E\VE, & E,VE
Next, they are distributive:
E\&(Ex V E3) & (B\&Ey) V (E1& E3)
EyV (BE&E3) & (B V Ey)&(EL V E)
In addition, they are associative:
E\&(B &) & (E\& Ep)&Es
E\V(EyV E;) & (E\VE)VE;s
They obey de Morgan’s laws:
(BE1&E,) & (-B)V (-E)
(B V Ey) & (-E)&(~E)
And finally, two — symbols annihilate each other:
-(-E) & B

Quantifiers Determine When Expressions Are True

To signal that an expression is universally true, you use a symbol meaning
for all, written as V, as well as a variable standing in for possible objects.
In the following example, the expression, when true, says that any object
having feathers is a bird:

Vz|Feathers(z) = Bird(z))

Like other expressions, Vz[Feathers(z) = Bird(z)] can be true or false.
If true, a V expression means that you get a true expression when you
substitute any object for z inside the square brackets. For example, if
Vz[Feathers(z) = Bird(z)] is true, then certainly Feathers(Squigs) =
Bird(Squigs) is true and Feathers(Suzie) = Bird(Suzie) is true.

When an expression is surrounded by the square brackets associated
with a quantifier, the expression is said to lie within the scope of that
quantifier. The expression Feathers(z) = Bird(z) therefore lies within the
scope of the V quantifier.

Because true expressions starting with V say something about all possi-
ble object-for-variable substitutions within their scope, they are said to be
universally quantified. Consequently, V is called the universal quan-
tifier.

Some expressions, although not always true, are true at least for some
objects. Logic captures this idea using a symbol meaning there exists,
written as 3, used like this:

Jz[Bird(z)]

288

Chapter

13 Logic and Resolution Proof

When true, this expression means that there is at least one possible ob-
ject, that, when substituted for z, makes the expression inside the square
brackets true. Perhaps Bird(Squigs) is true; in any case, something like
Bird(Squigs) is true.

Expressions with 3 are said to be existentially quantified. The
symbol 3 is called the existential quantifier.

Logic Has a Rich Vocabulary

One problem with logic is that there is a large vocabulary to keep straight.
For reference, let us gather together and complete the common elements of
that vocabulary now, by way of figure 13.2 and the following definitions:

m A world’s objects are terms.

m Variables ranging over a world’s objects are terms.

m Functions are terms. The arguments to functions and the values
returned are terms.

Terms are the only things that appear as arguments to predicates.

m Atomic formulas are individual predicates, together with arguments.

m Literals are atomic formulas and negated atomic formulas.

m Well-formed formulas, generally referred to, regrettably, by the ab-
breviation wffs, are defined recursively: literals are wifs; wffs connected
together by, -, &, V, and = are wifs; and wiffs surrounded by quanti-
fiers are also wifs.

For wffs, there are some special cases:

m A wif in which all the variables, if any, are inside the scope of corre-
sponding quantifiers is a sentence. These are sentences:

Vz|Feathers(z) = Bird(z)]
Feathers(Albatross) = Bird(Albatross)

Variables such as z, appearing within the scope of corresponding quanti-
fiers, are said to be bound. Variables that are not bound are free. The
following expression is not a sentence, because it contains a free variable,
iy
Vz[Feathers(z) V —Feathers(y))

Note carefully that variables can represent objects only; variables cannot
represent predicates. Consequently, this discussion is limited to a kind
of logic called first-order predicate calculus. A more advanced topic,
second-order predicate calculus permits variables representing predi-
cates. A less advanced topic, propositional calculus, permits no vari-
ables of any kind.

8 A wif consisting of a disjunction of literals is a clause.

Generally, the word ezpression is used interchangeably with wff, for using
a lot of wifs makes it difficult to think about logic, instead of kennels.

Logic Has a Rich Vocabulary 289

Figure 13.2 The vocabulary
of logic. Informally, the sample
well-formed formula says this:
Stating that the unspecified
object, z, satisfies the predicate
Feathers implies that z satisfies

the predicate Bird.
L~

=

l / Feathers

Atomlc formulas Negatlu
eathers

!

Connectives Literals Quantifiers

ﬂv&a\i‘/ v 3

l

uVell-forméd formulas—[

vx[Feathers(x) = Bird(x)]

290 Chapter 13 Logic and Resolution Proof

Figure 13.3 An interpretation
is an accounting for how
objects and relations map to

object symbols and predicates.
’

Logic Imaginable world
Object symbols Objects

B (J e [

A (T

Predicates Relations

On(B,A) < e R -->» On-relation

Interpretations Tie Logic Symbols to Worlds

Ultimately, the point of logic is to say something about an imaginable
world. Consequently, object symbols and predicates must be related to
more tangible things. As figure 13.3 illustrates, the two symbol categories
correspond to two world categories:

Objects in a world correspond to object symbols in logic. In the ex-
ample shown in figure 13.3, the object symbols A and B on the left
correspond to two things in the imaginable world shown on the right.
Relations in a world correspond to predicates in logic. Whenever a
relation holds with respect to some objects, the corresponding pred-
icate is true when applied to the corresponding object symbols. In
the example, the logic-world predicate, On, applied to object symbols
B and A, is true because the imaginable-world relation, On-relation,
holds between the two imaginable-world objects.

An interpretation is a full accounting of the correspondence between
objects and object symbols, and between relations and predicates.

Proofs Tie Axioms to Consequences 291

Proofs Tie Axioms to Consequences

Now you are ready to explore the notion of proof. Suppose that you are
told that both of the following expressions are true:

Feathers(Squigs)
Vz|Feathers(z) = Bird(z)]

From the perspective of interpretations, to say that such expressions are
true means that you are restricting the interpretations for the object sym-
bols and predicates to those objects and relations for which the implied
imaginable-world relations hold. Any such interpretation is said to be a
model for the expressions.

When you are told Feathers(Squigs) and Vz[Feathers(z) = Bird(z)]
are true, those expressions are called axioms. Now suppose that you are
asked to show that all interpretations that make the axioms true also make
the following expression true:

Bird(Squigs)

If you succeed, you have proved that Bird(Squigs) is a theorem with
respect to the axioms:

m Said in the simplest terms, you prove that an expression is a theorem
when you show that the theorem must be true, given that the axioms
are true.

m Said in the fanciest terms, you prove that an expression is a theorem
when you show that any model for the axioms is also a model for the
theorem. You say that the theorem logically follows from the axioms.

The way to prove a theorem is to use a proof procedure. Proof procedures
use manipulations called sound rules of inference that produce new
expressions from old expressions such that, said precisely, models of the
old expressions are guaranteed to be models of the new ones too.

The most straightforward proof procedure is to apply sound rules of
inference to the axioms, and to the results of applying sound rules of infer-
ence, until the desired theorem appears.

Note that proving a theorem is not the same as showing that an ex-
pression is valid, meaning that the expression is true for all possible inter-
pretations of the symbols. Similarly, proving a theorem is not the same as
showing that an expression is satisfiable, meaning that it is true for some
possible interpretation of the symbols.

The most straightforward sound rule of inference used in proof proce-
dures is modus ponens. Modus ponens says this: If there is an axiom of
the form F, = E,, and there is another axiom of the form F;, then E,
logically follows.

If E; is the theorem to be proved, you are done. If not, you might as
well add E,; to the axioms, for it will always be true when all the rest of
the axioms are true. Continuing with modus ponens on an ever-increasing

292

Chapter 13 Logic and Resolution Proof

list of axioms may eventually show that the desired theorem is true, thus
proving the theorem.

For the feathers-and-bird example, the axioms are just about right for
the application of modus ponens. First, however, you must specialize the
second expression. You have Vz[Feathers(z) = Bird(z)]. Because you are
dealing with interpretations for which Feathers(z) = Bird(z) is true for
all z, it must be true for the special case where z is Squigs. Consequently,
Feathers(Squigs) = Bird(Squigs) must be true.

Now, the first expression, Feathers(Squigs), and the specialization of
the second expression, Feathers(Squigs) = Bird(Squigs), fit modus ponens
exactly, once you substitute Feathers(Squigs) for E; and Bird(Squigs) for
E». You conclude that Bird(Squigs) must be true. The theorem is proved.

Resolution Is a Sound Rule of Inference

One of the most important rules of inference is resolution. Resolution
says this: If there is an axiom of the form E; V E,, and there is another
axiom of the form —E, V E3, then E1 V E; logically follows. The expression
E, V Ej3 is called the resolvent of E; V E; and ~E; V E3.

Let us look at the various possibilities to see whether resolution is
believable. First, suppose E is true; then —FE, must be false. But if ~Ey is
false, from the second expression, then E3 must be true. But if Ej is true,
then surely E; V E3 is true. Second, suppose that E» is false. Then, from
the first expression, E; must be true. But if E, is true, then surely Ey V E3
is true. You conclude that the resolvent, E, V E3, must be true as long as
both Ej V E; and ~E, V Ej are true.

It is easy to generalize resolution such that there can be any number
of disjuncts, including just one, in either of the two resolving expressions.
The only demand is that one resolving expression must have a disjunct
that is the negation of a disjunct in the other resolving expression. Once
generalized, you can use resolution to reach the same conclusion about
Squigs that you reached before with modus ponens.

The first step is to specialize the quantified expression to Squigs. The
next step is to rewrite it, eliminating =, producing these:

Feathers(Squigs)
—Feathers(Squigs) V Bird(Squigs)

So written, resolution obviously applies, dropping out Feathers(Squigs) and
—Feathers(Squigs), producing Bird(Squigs).

As a matter of fact, this example suggests a general truth: Modus
ponens can be viewed as a special case of resolution, because anything
concluded with modus ponens can be concluded with resolution as well. To
see why, let one expression be E,, and let the other be Ey = E,. According
to modus ponens, E; must be true. But you know that Ey = E, can be
rewritten as —~FE; V Eo. So rewritten, resolution can be applied, dropping

Resolution Proves Theorems by Refutation 293

out the F; and the —F;, producing F,, which is the same result that you
obtained using modus ponens.

Similarly, resolution subsumes another rule of inference called modus
tolens. Modus tolens says this: If there is an axiom of the form E; = F,
and there is another axiom of the form —E;, then - £ logically follows.

RESOLUTION PROOFS

To prove a theorem, one obvious strategy is to search forward from the
axioms using sound rules of inference, hoping to stumble across the theorem
eventually. In this section, you learn about another strategy, the one used
in resolution theorem proving, that requires you to show that the negation
of a theorem cannot be true:

m Assume that the negation of the theorem is true.

® Show that the axioms and the assumed negation of the theorem to-
gether force an expression to be true that cannot be true.

m Conclude that the assumed negation of the theorem cannot be true
because it leads to a contradiction.

m Conclude that the theorem must be true because the assumed negation
of the theorem cannot be true.

Proving a theorem by showing its negation cannot be true is called proof
by refutation.

Resolution Proves Theorems by Refutation

Consider the Squigs example again. Recall that you know from the axioms
the following;:

—Feathers(Squigs) V Bird(Squigs)
Feathers(Squigs)
Adding the negation of the expression to be proved, you have this list:
—Feathers(Squigs) Vv Bird(Squigs)
Feathers(Squigs)
-Bird(Squigs)
Resolving the first and second axiom, as before, permits you to add a new
expression to the list:
—Feathers(Squigs) V Bird(Squigs)
Feathers(Squigs)
-Bird(Squigs)
Bird(Squigs)
But now there is a contradiction. All the things in the list are supposed to

be true. But it cannot be that Bird(Squigs) and —Bird(Squigs) are both
true. Consequently, the assumption that led to this contradiction must be

294 Chapter 13 Logic and Resolution Proof

(1)

—Feathers(Squigs) V Bird(Squigs) Bird(Squigs)

(2)
Feathers(Squigs)

|

(4)

(3)

-Bird(Squigs) Nil

(5)

Figure 13.4 A

tree recording the
resolutions needed

to prove Bird(Squigs).

R

false; that is, the negation of the theorem, —Bird(Squigs), must be false;
hence, the theorem, Bird(Squigs), must be true, which is what you set out
to show.

The traditional way to recognize that the theorem is proved is to wait
until resolution happens on a literal and that literal’s contradicting nega-
tion. The result is an empty clause—one with nothing in it—which by
convention is written as Nil. When resolution produces Nil, you are guar-
anteed that resolution has produced manifestly contradictory expressions.
Consequently, production of Nil is the signal that resolution has proved the
theorem.

Usually, it is illuminating to use a treelike diagram to record how
clauses get resolved together on the way to producing an empty clause.
Figure 13.4 is the tree for the proof.

Using Resolution Requires Axioms to Be in Clause Form

Now that you have the general idea of how proof by resolution works, it is
time to understand various manipulations that make harder proofs possible.
Basically, the point of these manipulations is to transform arbitrary logic
expressions into a form that enables resolution. Specifically, you need a
way to transform the given axioms into equivalent, new axioms that are all
disjunctions of literals. Said another way, you want the new axioms to be
in clause form.

An axiom involving blocks illustrates the manipulations. Although the
axiom is a bit artificial, so as to exercise all the transformation steps, the
axiom’s message is simple. First, a brick is on something that is not a
pyramid; second, there is nothing that a brick is on and that is on the

Using Resolution Requires Axioms to Be in Clause Form 295

brick as well; and third, there is nothing that is not a brick and also is the
same thing as the brick:

Vz[Brick(z) = (3y[On(z, y)&—-Pyramid(y)]
&—-3y[On(z, y)&On(y, z)]
&Vy[-Brick(y) = ~Equal(z, y)])]

As given, however, the axiom cannot be used to produce resolvents because
it is not in clause form. Accordingly, the axiom has to be transformed into
one or more equivalent axioms in clause form. You soon see that the
transformation leads to four new axioms and requires the introduction of
another function, Support:

—Brick(z) V On(z, Support(z))
=Brick(w) V =Pyramid(Support(w))
—Brick(u) V =On(u, y) V =On(y, v)
—Brick(v) V Brick(z) V =Equal(v, z)
Next, let us consider the steps needed to transform arbitrary logical ex-

pressions into clause form. Once explained, the steps will be summarized
in a procedure.

@ Eliminate implications.

The first thing to do is to get rid of all the implications. This step is easy:
All you need to do is to substitute —E, V E, for F; = E,. For the example,
you have to make two such substitutions, leaving you with this:

Vz[-Brick(z) V (3y[On(z, y)&-Pyramid(y)]
&-3y[On(z, y)&On(y, z)]
&Vy[-~(=Brick(y)) V ~Equal(z, y)])]

B Move negations down to the atomic formulas.

Doing this step requires a number of identities, one for dealing with the
negation of & expressions, one for V expressions, one for — expressions, and
one each for V and 3:

(E1&Ep) — (Ey) V (- Ey)
~(EvV Ep) — (~E)&(—E;)
~(=