
WELCOME!
(download slides and .py files and follow along!)

6.0001 LECTURE 1

16.0001 LECTURE 1

TODAY
 course info

 what is computation

 python basics

 mathematical operations

 python variables and types

 NOTE: slides and code files up before each lecture
o highly encourage you to download them before lecture

o take notes and run code files when I do

o bring computers to answer in-class practice exercises!

26.0001 LECTURE 1

COURSE INFO
Grading

◦ approx. 20% Quiz

◦ approx. 40% Final

◦ approx. 30% Problem Sets

◦ approx. 10% MITx Finger Exercises

36.0001 LECTURE 1

COURSE POLICIES
 Collaboration

◦ may collaborate with anyone

◦ required to write code independently and write names of
all collaborators on submission

◦ we will be running a code similarity program on all psets

 Extensions
◦ no extensions

◦ late days, see course website for details

◦ drop and roll weight of max two psets in final exam grade

◦ should be EMERGENCY use only

46.0001 LECTURE 1

RECITATIONS
not mandatory

 two flavors

1) Lecture review: review lecture material
o if you missed lecture

o if you need a different take on the same concepts

2) Problem solving: teach you how to solve programming
problems

o useful if you don’t know how to set up pseudocode from pset words

o we show a couple of harder questions

o walk you through how to approach solving the problem

o brainstorm code solution along with the recitation instructor

o will post solutions after

6.0001 LECTURE 1 5

FAST PACED COURSE
 Position yourself to succeed!

◦ read psets when they come out and come back to them later

◦ use late days in emergency situations

 New to programming? PRACTICE. PRACTICE? PRACTICE!
◦ can’t passively absorb programming as a skill

◦ download code before lecture and follow along

◦ do MITx finger exercises

◦ don’t be afraid to try out Python commands!

66.0001 LECTURE 1

PRACTICE

76.0001 LECTURE 1

PROBLEM
SOLVING

PROGRAMMING
SKILL

KNOWLEDGE
OF CONCEPTS

TOPICS
 represent knowledge with data structures

 iteration and recursion as computational metaphors

 abstraction of procedures and data types

 organize and modularize systems using object classes
and methods

 different classes of algorithms, searching and sorting

 complexity of algorithms

6.0001 LECTURE 1 8

WHAT DOES A COMPUTER DO
 Fundamentally:

◦ performs calculations

a billion calculations per second!

◦ remembers results

100s of gigabytes of storage!

 What kinds of calculations?
◦ built-in to the language

◦ ones that you define as the programmer

 computers only know what you tell them

6.0001 LECTURE 1 9

TYPES OF KNOWLEDGE
 declarative knowledge is statements of fact.

◦ someone will win a Google
Cardboard before class ends

 imperative knowledge is a recipe or “how-to”.
1) Students sign up for raffle

2) Ana opens her IDE

3) Ana chooses a random number between 1st and nth responder

4) Ana finds the number in the responders sheet. Winner!

6.0001 LECTURE 1 10

A NUMERICAL EXAMPLE
 square root of a number x is y such that y*y = x

 recipe for deducing square root of a number x (16)
1) Start with a guess, g

2) If g*g is close enough to x, stop and say g is the
answer

3) Otherwise make a new guess by averaging g and x/g

4) Using the new guess, repeat process until close enough

6.0001 LECTURE 1 11

g g*g x/g (g+x/g)/2

3 9 16/3 4.17

4.17 17.36 3.837 4.0035

4.0035 16.0277 3.997 4.000002

WHAT IS A RECIPE

1) sequence of simple steps

2) flow of control process that specifies when each
step is executed

3) a means of determining when to stop

1+2+3 = an algorithm!

6.0001 LECTURE 1 12

COMPUTERS ARE MACHINES
 how to capture a recipe in a mechanical process

 fixed program computer
◦ calculator

 stored program computer
◦ machine stores and executes instructions

6.0001 LECTURE 1 13

BASIC MACHINE ARCHITECTURE

6.0001 LECTURE 1 14

MEMORY

CONTROL

UNIT

ARITHMETIC

LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops

STORED PROGRAM COMPUTER
 sequence of instructions stored inside computer

◦ built from predefined set of primitive instructions
1) arithmetic and logic

2) simple tests

3) moving data

 special program (interpreter) executes each
instruction in order
◦ use tests to change flow of control through sequence

◦ stop when done

6.0001 LECTURE 1 15

BASIC PRIMITIVES
 Turing showed that you can compute anything using 6
primitives

 modern programming languages have more
convenient set of primitives

 can abstract methods to create new primitives

 anything computable in one language is computable in
any other programming language

6.0001 LECTURE 1 16

CREATING RECIPES
 a programming language provides a set of primitive
operations

 expressions are complex but legal combinations of
primitives in a programming language

 expressions and computations have values and
meanings in a programming language

6.0001 LECTURE 1 17

ASPECTS OF LANGUAGES
 primitive constructs

◦ English: words

◦ programming language: numbers, strings, simple
operators

6.0001 LECTURE 1 18

Word Cloud copyright Michael Twardos, All Right Reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Word Cloud copyright unknown, All Right Reserved.
This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.

https://www.blogger.com/profile/13059549809775325178
https://ocw.mit.edu/help/faq-fair-use/
https://ocw.mit.edu/help/faq-fair-use/
http://1.bp.blogspot.com/-JG9yJyFtVJ8/TklEax76aCI/AAAAAAAAB6I/jviw0P9nJsI/s1600/Screen%2Bshot%2B2011-07-24%2Bat%2B12.24.01%2BPM.png

ASPECTS OF LANGUAGES
 syntax

◦ English: "cat dog boy"  not syntactically valid

"cat hugs boy" syntactically valid

◦ programming language: "hi"5 not syntactically valid

3.2*5 syntactically valid

6.0001 LECTURE 1 19

ASPECTS OF LANGUAGES
 static semantics is which syntactically valid strings
have meaning
◦ English: "I are hungry" syntactically valid

but static semantic error

◦ programming language: 3.2*5  syntactically valid

3+"hi" static semantic error

6.0001 LECTURE 1 20

ASPECTS OF LANGUAGES
 semantics is the meaning associated with a
syntactically correct string of symbols with no static
semantic errors
◦ English: can have many meanings "Flying planes
can be dangerous"

◦ programming languages: have only one meaning but may
not be what programmer intended

6.0001 LECTURE 1 21

WHERE THINGS GO WRONG
 syntactic errors

◦ common and easily caught

 static semantic errors
◦ some languages check for these before running program

◦ can cause unpredictable behavior

 no semantic errors but different meaning than what
programmer intended
◦ program crashes, stops running

◦ program runs forever

◦ program gives an answer but different than expected

6.0001 LECTURE 1 22

PYTHON PROGRAMS
 a program is a sequence of definitions and commands

◦ definitions evaluated

◦ commands executed by Python interpreter in a shell

 commands (statements) instruct interpreter to do
something

 can be typed directly in a shell or stored in a file that
is read into the shell and evaluated
◦ Problem Set 0 will introduce you to these in Anaconda

6.0001 LECTURE 1 23

OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things
programs can do to them
◦ Ana is a human so she can walk, speak English, etc.

◦ Chewbacca is a wookie so he can walk, “mwaaarhrhh”, etc.

 objects are
◦ scalar (cannot be subdivided)

◦ non-scalar (have internal structure that can be accessed)

6.0001 LECTURE 1 24

SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)

int

>>> type(3.0)

float

6.0001 LECTURE 1 25

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.0001 LECTURE 1 26

PRINTING TO CONSOLE
 to show output from code to a user, use print
command

In [11]: 3+2

Out[11]: 5

In [12]: print(3+2)

5

6.0001 LECTURE 1 27

EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression
<object> <operator> <object>

6.0001 LECTURE 1 28

OPERATORS ON ints and floats
 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.0001 LECTURE 1 29

if both are ints, result is int
if either or both are floats, result is float

result is float

SIMPLE OPERATIONS
 parentheses used to tell Python to do these
operations first

 operator precedence without parentheses
◦ **

◦ *

◦ /

◦ + and – executed left to right, as appear in expression

6.0001 LECTURE 1 30

BINDING VARIABLES AND
VALUES
 equal sign is an assignment of a value to a variable
name

pi = 3.14159

pi_approx = 22/7

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by
invoking the name, by typing pi

6.0001 LECTURE 1 31

ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 to reuse names instead of values

 easier to change code later

pi = 3.14159

radius = 2.2

area = pi*(radius**2)

6.0001 LECTURE 1 32

PROGRAMMING vs MATH
 in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2

area of circle

area = pi*(radius**2)

radius = radius+1

6.0001 LECTURE 1 33

CHANGING BINDINGS
 can re-bind variable names using new assignment
statements

 previous value may still stored in memory but lost the
handle for it

 value for area does not change until you tell the
computer to do the calculation again

6.0001 LECTURE 1 34

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

