
BRANCHING,
ITERATION
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 2

6.0001 LECTURE 2 1

LAST TIME
 syntax and semantics

 scalar objects

 simple operations

 expressions, variables and values

6.0001 LECTURE 2 2

TODAY
 string object type

 branching and conditionals

 indentation

 iteration and loops

6.0001 LECTURE 2 3

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes
hi = "hello there"

 concatenate strings
name = "ana"

greet = hi + name

greeting = hi + " " + name

 do some operations on a string as defined in Python docs
silly = hi + " " + name * 3

6.0001 LECTURE 2 4

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

6.0001 LECTURE 2 5

INPUT/OUTPUT: input("")
 prints whatever is in the quotes

 user types in something and hits enter

 binds that value to a variable

text = input("Type anything... ")

print(5*text)

 input gives you a string so must cast if working
with numbers

num = int(input("Type a number... "))

print(5*num)

6.0001 LECTURE 2 6

COMPARISON OPERATORS ON
int, float, string

 i and j are variable names

 comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j equality test, True if i is the same as j

i != j inequality test, True if i not the same as j

6.0001 LECTURE 2 7

LOGIC OPERATORS ON bools
 a and b are variable names (with Boolean values)

not a  True if a is False
False if a is True

a and b  True if both are True

a or b  True if either or both are True

6.0001 LECTURE 2 8

A B A and B A or B

True True True True

True False False True

False True False True

False False False False

COMPARISON EXAMPLE
pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

6.0001 LECTURE 2 9

If right clear,
go right

If right blocked,
go forward

If right and
front blocked,

go left

If right , front,
left blocked,

go back

6.0001 LECTURE 2 10

CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.0001 LECTURE 2 11

INDENTATION
matters in Python

 how you denote blocks of code
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

print("x is smaller")

print("y is smaller")

6.0001 LECTURE 2 12

= vs ==
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

6.0001 LECTURE 2 13

 Legend of Zelda –
Lost Woods

 keep going right,
takes you back to this
same screen, stuck in
a loop

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

if <exit right>:

<set background to woods_background>

and so on and on and on...

else:

<set background to exit_background>

else:

<set background to exit_background>

else:

<set background to exit_background>

<set background to woods_background>

if <exit right>:

else:

<set background to exit_background>

<set background to woods_background>

if <exit right>:

else:

<set background to exit_background>

<set background to woods_background>

and so on and on and on...

<set background to exit_background>

6.0001 LECTURE 2 14

Image Courtesy Nintendo, All Rights Reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

while <exit right>:

<set background to woods_background>

<set background to exit_background>

 Legend of Zelda –
Lost Woods

 keep going right,
takes you back to this
same screen, stuck in
a loop

6.0001 LECTURE 2 15

<set background to woods_background>

Word Cloud copyright unknown, All Right Reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the
while code block

 check <condition> again

 repeat until <condition> is False

6.0001 LECTURE 2 16

while LOOP EXAMPLE
You are in the Lost Forest.



Go left or right?

PROGRAM:

n = input("You're in the Lost Forest. Go left or right? ")

while n == "right":

n = input("You're in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!")

6.0001 LECTURE 2 17

CONTROL FLOW:
while and for LOOPS
 iterate through numbers in a sequence

more complicated with while loop

n = 0

while n < 5:

print(n)

n = n+1

shortcut with for loop

for n in range(5):

print(n)

6.0001 LECTURE 2 18

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression>

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc.

6.0001 LECTURE 2 19

range(start,stop,step)
 default values are start = 0 and step = 1 and optional

 loop until value is stop - 1

mysum = 0

for i in range(7, 10):

mysum += i

print(mysum)

mysum = 0

for i in range(5, 11, 2):

mysum += i

print(mysum)

6.0001 LECTURE 2 20

break STATEMENT
 immediately exits whatever loop it is in

 skips remaining expressions in code block

 exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.0001 LECTURE 2 21

break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

 what happens in this program?

mysum += i

if mysum == 5:

break

6.0001 LECTURE 2 22

for VS while LOOPS
for loops

 know number of
iterations

 can end early via
break

 uses a counter

 can rewrite a for loop
using a while loop

while loops

 unbounded number of
iterations

 can end early via break

 can use a counter but
must initialize before loop
and increment it inside loop

may not be able to
rewrite a while loop using
a for loop

6.0001 LECTURE 2 23

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

