DECOMPOSITION,
ABSTRACTION,
FUNCTIONS

(download slides and .py files YR follow along!)

6.0001 LECTURE 4

LAST TIME

= while loops vs for loops

= should know how to write both kinds
= should know when to use them
= guess-and-check and approximation methods

= bisection method to speed up programs

6.0001 LECTURE 4 2

TODAY

= structuring programs and hiding details

= functions
= specifications
= keywords: returnvs print

" scope

6.0001 LECTURE 4 3

HOW DO WE WRITE CODE?

= so far...
* covered language mechanisms

* know how to write different files for each computation
* each file is some piece of code
* each code is a sequence of instructions

= problems with this approach
* easy for small-scale problems

* messy for larger problems
* hard to keep track of details

* how do you know the right info is supplied to the right
part of code

6.0001 LECTURE 4 4

GOOD PROGRAMMING

" more code not necessarily a good thing

" measure good programmers by the amount of
functionality

= introduce functions

" mechanism to achieve decomposition and abstraction

6.0001 LECTURE 4 5

EXAMPLE — PROJECTOR

= 3 projector is a black box

= don’t know how it works
= know the interface: input/output

= connect any electronic to it that can communicate
with that input

" black box somehow converts image from input source
to a wall, magnifying it

= ABSTRACTION IDEA: do not need to know how
projector works to use it

6.0001 LECTURE 4 6

EXAMPLE — PROJECTOR

= projecting large image for Olympics decomposed into
separate tasks for separate projectors

= each projector takes input and produces separate
output

= all projectors work together to produce larger image

= DECOMPOSITION IDEA: different devices work
together to achieve an end goal

6.0001 LECTURE 4 7

APPLY THESE CONCEPTS

TO PROGRAMMING!

CREATE STRUCTURE with
DECOMPOSITION

" in projector example, separate devices

= in programming, divide code into modules
* are self-contained

* used to break up code

* intended to be reusable
* keep code organized

* keep code coherent

= this lecture, achieve decomposition with functions

" in a few weeks, achieve decomposition with classes

SUPRESS DETAILS with
ABSTRACTION

" in projector example, instructions for how to use it are
sufficient, no need to know how to build one

" in programming, think of a piece of code as a black box
* cannot see details

 do not need to see details
 do not want to see details
* hide tedious coding details

= achieve abstraction with function specifications or
docstrings

6.0001 LECTURE 4

FUNCTIONS

= write reusable pieces/chunks of code, called functions

= functions are not run in a program until they are
“called” or “invoked” in a program

= function characteristics:
* has a name
* has parameters (0O or more)
has a docstring (optional but recommended)
has a body
returns something

6.0001 LECTURE 4

HOW -

'O WRITE and

CALL/INVOKE A FUNCTION

\! XS
WO ((\e e\.e 'y O
N NG Q&&Odwé« G2
. . (O
defllis even|| i]): “o® Q% 0%
_ o) &fﬁ

mwiiw

Input: 1, a positive 1int

Returns True 1f 1 i1s even, otherwise False

mwriw

oo

print ("inside

return 1%2 ==

1s even (3)

is even") “«@
N0 e?®
0 0661 (\3((\6
C .
e \\S S
@q\éﬁg(&ﬂg
XS . A0 O (o
\° C"\O < Q’a
‘\\)(\\ \)ec) %O
J°o

6.0001 LECTURE 4

IN THE FUNCTION BODY

def i1s even(1):
Input: 1, a positive 1int

Returns True 1f 1 i1s even, otherwise False

W (\SO((\Q 35
(\) ((\3(\
print ("inside 1s even") o
return||i%2 == 0 a
Y \!
- Al X
No(d (e(:c-’\o 606 (e
eN®

6.0001 LECTURE 4

VARIABLE SCOPE

= formal parameter gets bound to the value of
actual parameter when function is called

= new scope/frame/environment created when enter a function

" scope is mapping of names to objects

\ ™~
2 «e (o
f £ I AR <
de (|x]) < @ oot \(\\‘\o‘\

2
x = x + 1 ° >6"5

6.0001 LECTURE 4

VARIABLE SCOPE

def £(x):

x = x + 1

Global scope

Some

print('in f(x): x =", code

return X

|
X

VARIABLE SCOPE

def £(x):

x = x + 1

Global scope

Some

print('in f(x): x =", code

return X

|
X

VARIABLE SCOPE

def £(x):

x = x + 1

Global scope

Some

print('in f(x): x =", code

return X

|
X

VARIABLE SCOPE

def £(x):

x = x + 1

Global scope

Some

print('in f(x): x =", code

return X

|
X

ONE WARNING IF NO
return STATEMENT

def 1s even(1):

ITnput: 1, a posilitive 1nt

Does not return anything

12 == 0

= Python returns the value None, if no return given

= represents the absence of a value

return VS. print

= return only has meaning | = print can be used outside
inside a function functions

= only one return executed

o : " can execute many print
inside a function yp

statements inside a function

= code inside function but .. .
after return statement not| " code inside function can be

executed executed after a print

_ statement
= has a value associated

with it, given to function | = has a value associated with
caller it, outputted to the console

6.0001 LECTURE 4

def

def

FUNCTIONS AS ARGUMENTS

= arguments can take on any type, even functions

func a():

print 'inside func a'
func b (y):
print 'inside func Db’

return y

e‘e(s QO
def func c(z): &gﬁ 0&@
£ NN & (<
print 'inside func c' (#55 ,ﬁﬁﬁ 0§Ne
return z () ¢ © 0099 b
A\ &00 \,3\66 3(3((\
rint | func a/() co O e ©
e
print 5 +|func b (2) gﬁg'(:(h“N
print|func c(func a) d&gﬁo

6.0001 LECTURE 4

FUNCTIONS AS ARGUMENTS

Global scope func_a scope
def func al():
- func_a ~ S0me
print 'inside func a' code

def func b (y): Some
func_b ceEle

print 'inside func Db’
return vy Some

def func c(z): func_c = code

' | . '
print 'inside func c None returns None

return z ()

print| func a()

print 5 + func b(2)

print func c(func a)

6.0001 LECTURE 4

FUNCTIONS AS ARGUMENTS

func_b scope

Global scope

def func a(): func g Some

rint 'inside func a' code
P _

def func_b (Y) : Some
func_b

print 'inside func b' code

return vy Some
func_c code

def func c(z):

- L 2 1
print 'inside func c None

return z ()

print func a() returns 2

print 5 +| func b (2)

print func c(func a)

6.0001 LECTURE 4

FUNCTIONS AS ARGUMENTS

Global scope func_c scope
def func al() :
- func_a ~ SOME func a
print 'inside func a' code -

def func b(y): Some
func_b

print 'inside func b' code

func a scope
return vy Some - P

def func c(z): func_c ' code

- | 2]
print 'inside func c None

return| z ()

returns None

print func a()

print 5 + func b(2)

returns None

print| func c(func a)

6.0001 LECTURE 4

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

def f(y):

def g(y):

rint
*Z»&(O(f\de S b .
&9 print
o)

3

X
+

X = 5

g (X) N

. 0 (e
prlnt(X)ﬁQ§§6§
O X0
$'\06(0 ScoQ
(O 00"

O

6\)9

6.0001 LECTURE 4

def h(y):

X +=

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

" inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

def f(y): def g (y): def h(y):
x =1 print (x) X += 1
X 4=

1
print (x)

6.0001 LECTURE 4

HARDER SCOPE EXAMPLE

IMPORTANT

and
TRICKY!

Python Tutor is your best friend to
help sort this out!

http://www.pythontutor.com/

http://www.pythontutor.com/

def

SCOPE DETAILS

Global scope

8 Some
code

def

SCOPE DETAILS

g (x) Global scope
def h(): g Some
x = 'abc' code

g scope

def

SCOPE DETAILS

g (x) Global scope
def h(): g Some
x = 'abc' code

g scope

def

SCOPE DETAILS

g (x) Global scope
def h(): g Some
x = 'abc' code

def

SCOPE DETAILS

g (x) Global scope
def h(): g Some
x = 'abc' code

g scope

returns 4

def

SCOPE DETAILS

g (x) Global scope
def h{(): g Some
x = 'abc' code

DECOMPOSITION &
ABSTRACTION

= powerful together

= code can be used many times but only has to be
debugged once!

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

