
DECOMPOSITION,
ABSTRACTION,
FUNCTIONS
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 4

6.0001 LECTURE 4 1

LAST TIME
 while loops vs for loops

 should know how to write both kinds

 should know when to use them

 guess-and-check and approximation methods

 bisection method to speed up programs

6.0001 LECTURE 4 2

TODAY
 structuring programs and hiding details

 functions

 specifications

 keywords: return vs print

 scope

6.0001 LECTURE 4 3

HOW DO WE WRITE CODE?
 so far…
• covered language mechanisms

• know how to write different files for each computation

• each file is some piece of code

• each code is a sequence of instructions

 problems with this approach
• easy for small-scale problems

• messy for larger problems

• hard to keep track of details

• how do you know the right info is supplied to the right
part of code

6.0001 LECTURE 4 4

GOOD PROGRAMMING
 more code not necessarily a good thing

 measure good programmers by the amount of
functionality

 introduce functions

 mechanism to achieve decomposition and abstraction

6.0001 LECTURE 4 5

EXAMPLE – PROJECTOR
 a projector is a black box

 don’t know how it works

 know the interface: input/output

 connect any electronic to it that can communicate
with that input

 black box somehow converts image from input source
to a wall, magnifying it

 ABSTRACTION IDEA: do not need to know how
projector works to use it

6.0001 LECTURE 4 6

EXAMPLE – PROJECTOR
 projecting large image for Olympics decomposed into
separate tasks for separate projectors

 each projector takes input and produces separate
output

 all projectors work together to produce larger image

 DECOMPOSITION IDEA: different devices work
together to achieve an end goal

6.0001 LECTURE 4 7

APPLY THESE CONCEPTS

6.0001 LECTURE 4 8

TO PROGRAMMING!

CREATE STRUCTURE with
DECOMPOSITION

6.0001 LECTURE 4 9

 in projector example, separate devices

 in programming, divide code into modules
• are self-contained

• used to break up code

• intended to be reusable

• keep code organized

• keep code coherent

 this lecture, achieve decomposition with functions

 in a few weeks, achieve decomposition with classes

SUPRESS DETAILS with
ABSTRACTION

6.0001 LECTURE 4 10

 in projector example, instructions for how to use it are
sufficient, no need to know how to build one

 in programming, think of a piece of code as a black box
• cannot see details

• do not need to see details

• do not want to see details

• hide tedious coding details

 achieve abstraction with function specifications or
docstrings

FUNCTIONS
 write reusable pieces/chunks of code, called functions

 functions are not run in a program until they are
“called” or “invoked” in a program

 function characteristics:
• has a name

• has parameters (0 or more)

• has a docstring (optional but recommended)

• has a body

• returns something

6.0001 LECTURE 4 11

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

is_even(3)

HOW TO WRITE and
CALL/INVOKE A FUNCTION

6.0001 LECTURE 4 12

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

IN THE FUNCTION BODY

6.0001 LECTURE 4 13

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

 formal parameter gets bound to the value of
actual parameter when function is called

 new scope/frame/environment created when enter a function

 scope is mapping of names to objects

VARIABLE SCOPE

6.0001 LECTURE 4 14

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE

6.0001 LECTURE 4 15

Global scope

f

x

z

Some
code

f scope

x 3

3

VARIABLE SCOPE

6.0001 LECTURE 4 16

Global scope

f

x

z

Some
code

f scope

x 4

3

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE

6.0001 LECTURE 4 17

Global scope

f

x

z

Some
code

3

f scope

x 4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

returns 4

VARIABLE SCOPE

6.0001 LECTURE 4 18

Global scope

f

x

z

Some
code

3

4

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

ONE WARNING IF NO
return STATEMENT
def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

 Python returns the value None, if no return given

 represents the absence of a value

6.0001 LECTURE 4 19

return vs. print
 return only has meaning
inside a function

 only one return executed
inside a function

 code inside function but
after return statement not
executed

 has a value associated
with it, given to function
caller

 print can be used outside
functions

 can execute many print
statements inside a function

 code inside function can be
executed after a print
statement

 has a value associated with
it, outputted to the console

6.0001 LECTURE 4 20

FUNCTIONS AS ARGUMENTS
 arguments can take on any type, even functions

6.0001 LECTURE 4 21

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

FUNCTIONS AS ARGUMENTS

6.0001 LECTURE 4 22

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

Global scope

func_a

func_b

func_c

Some
code

Some
code

Some
code

func_a scope

returns NoneNone

Global scope

func_a

func_b

func_c

FUNCTIONS AS ARGUMENTS

6.0001 LECTURE 4 23

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

Some
code

Some
code

Some
code

func_b scope

y 2

returns 2

None

7

Global scope

func_a

func_b

func_c

FUNCTIONS AS ARGUMENTS

24

def func_a():

print 'inside func_a'

def func_b(y):

print 'inside func_b'

return y

def func_c(z):

print 'inside func_c'

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

Some
code

Some
code

Some
code

func_c scope

z func_a

func_a scope

returns None

returns None

None

7

6.0001 LECTURE 4

None

 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

SCOPE EXAMPLE

6.0001 LECTURE 4 25

def g(y):

print(x)

print(x + 1)

x = 5

g(x)

print(x)

def h(y):

x += 1

x = 5

h(x)

print(x)

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)

 inside a function, can access a variable defined outside

 inside a function, cannot modify a variable defined
outside -- can using global variables, but frowned upon

SCOPE EXAMPLE

6.0001 LECTURE 4 26

def g(y):

print(x)

x = 5

g(x)

print(x)

def h(y):

x += 1

x = 5

h(x)

print(x)

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)

HARDER SCOPE EXAMPLE

Python Tutor is your best friend to
help sort this out!

http://www.pythontutor.com/

IMPORTANT
and

TRICKY!

6.0001 LECTURE 4 27

http://www.pythontutor.com/

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
Global scope

g

x

z

Some
code

3

6.0001 LECTURE 4 28

SCOPE DETAILS
g scope

x

h Some
code

3

6.0001 LECTURE 4 29

Global scope

g

x

z

Some
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
g scope

x

h Some
code

34

6.0001 LECTURE 4 30

Global scope

g

x

z

Some
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS
Global scope

g

x

z

Some
code

3

g scope

x

h Some
code

3

h scope

x
“abc”4

6.0001 LECTURE 4 31

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

returns None

SCOPE DETAILS
g scope

x

h Some
code

None

4

6.0001 LECTURE 4 32

Global scope

g

x

z

Some
code

3

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

returns 4

SCOPE DETAILS

6.0001 LECTURE 4 33

Global scope

g

x

z

Some
code

3

4

def g(x):

def h():

x = 'abc'

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

DECOMPOSITION &
ABSTRACTION
 powerful together

 code can be used many times but only has to be
debugged once!

6.0001 LECTURE 4 34

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

