
RECURSION,
DICTIONARIES
(download slides and .py files and follow along!)

6.0001 LECTURE 6

6.0001	LECTURE	6	 1	

QUIZ PREP

§ a	paper	and	an	online	component

§ open	book/notes

§ not	open	Internet,	not	open	computer

§	start	prinSng	out	whatever	you	may	want	to	bring	

6.0001	LECTURE	6	 2	

LAST TIME

§	tuples	-	immutable	

§	lists	-	mutable	

§	aliasing,	cloning		

§	mutability	side	effects	

6.0001	LECTURE	6	 3	

TODAY

§ recursion	–	divide/decrease	and	conquer

§	dicSonaries	–	another	mutable	object	type	

6.0001	LECTURE	6	 4	

RECURSION

Recursion	is	the	process	of	repeaSng	items	in	a	self-s
imilar	way.		

6.0001	LECTURE	6	 5	

WHAT IS RECURSION?

§	Algorithmically:	a	way	to	design	soluSons	to	problems	
by	divide-and-conquer	or	decrease-and-conquer
◦ reduce	a	problem	to	simpler	versions	of	the	same	
problem		

§	SemanScally:	a	programming	technique	where	a	
func0on	calls	itself	
◦ 	in	programming,	goal	is	to	NOT	have	infinite	recursion	
◦ 	must	have	1	or	more	base	cases	that	are	easy	to	solve	
◦ 	must	solve	the	same	problem	on	some	other	input	with	the	goal	
of	simplifying	the	larger	problem	input	

6.0001	LECTURE	6	 6	

ITERATIVE ALGORITHMS SO FAR

§	looping	constructs	(while	and	for	loops)	lead	to	
itera0ve	algorithms	

§	can	capture	computaSon	in	a	set	of	state	variables	
that	update	on	each	iteraSon	through	loop	

6.0001	LECTURE	6	 7	

MULTIPLICATION –
ITERATIVE SOLUTION

§	“mulSply	a	*	b”	is	equivalent	to	“add	a	to	itself	b	Smes”	

a + a + a + a + … + a §	capture	state	by		
◦ 	an	itera0on	number	(i)	starts	at	b	
 i ß i-1	and	stop	when	0	 0a 1a	 2a 3a 4a

lt)	◦ 	a	current	value	of	computa0on	(resu 	 	
 result ß result + a

def mult_iter(a, b):
 result = 0

 while b > 0:
 += aresult

b -= 1
 return result
	

6.0001	LECTURE	6	 8	

	 	 	

a*b = a + a + a + a + … + a

 = a + a + a + a + … + a

 = a + a * (b-1)

MULTIPLICATION –
RECURSIVE SOLUTION

§	recursive	step	

• 	think	how	to	reduce	
problem	to	a	simpler/
smaller	version	of	
same	problem		

§	base	case	
• 	keep	reducing	
problem	unSl	reach	a	
simple	case	that	can	
be	solved	directly	

• 	when	b	=	1,	a*b	=	a	

	
6.0001	LECTURE	6	 9	

def mult(a, b):

 if b == 1:

return a

 else:

return a + mult(a, b-1)

FACTORIAL

n! = n*(n-1)*(n-2)*(n-3)* … * 1

§	for	what	n	do	we	know	the	factorial?	
n	=	1 à if n == 1:

 return 1

§	how	to	reduce	problem?	Rewrite	in	terms	of	
something	simpler	to	reach	base	case	
n*(n-1)! 	à 	else:

 return n*factorial(n-1)

	

6.0001	LECTURE	6	 10	

RECURSIVE
FUNCTION
SCOPE
EXAMPLE

6.0001	LECTURE	6	 11	

Global	scope	

fact	 Some	
code	

fact	scope	
(call	w/	n=4)	

n	
4	

fact	scope	
(call	w/	n=3)	

n	
3	

fact	scope	
(call	w/	n=2)	

n	
2	

fact	scope	
(call	w/	n=1)	

n	
1	

def fact(n):
 if n == 1:

return 1
 else:

return n*fact(n-1)

print(fact(4))

SOME OBSERVATIONS

§	each	recursive	call	to	a	funcSon	creates	its	
own	scope/environment	

§	bindings	of	variables	in	a	scope	are	not	
changed	by	recursive	call	

§	flow	of	control	passes	back	to	previous	
scope	once	funcSon	call	returns	value	

6.0001	LECTURE	6	 12	

ITERATION vs. RECURSION

def factorial_iter(n): def factorial(n):

 prod = 1 if n == 1:

 for i in range(1,n+1): return 1

prod *= i else:

 return prod   return n*factorial(n-1)

6.0001	LECTURE	6	 13	

§ 	recursion	may	be	simpler,	more	intuiSve		
§ 	recursion	may	be	efficient	from	programmer	POV	
§ 	recursion	may	not	be	efficient	from	computer	POV	

INDUCTIVE REASONING

§	How	do	we	know	that	our	 def mult_iter(a, b):
recursive	code	will	work?	 result = 0

§	mult_iter	terminates	 while b > 0:
because	b	is	iniSally	posiSve,	 result += a
and	decreases	by	1	each	Sme	
around	loop;	thus	must	 b -= 1

eventually	become	less	than	1	 return result

§	mult	called	with	b	=	1	has	no	
recursive	call	and	stops	 def mult(a, b):

§	mult		called	with	b	>	1	makes	 if b == 1:
a	recursive	call	with	a	smaller	 return aversion	of	b;	must	eventually	
reach	call	with	b	=	1	 else:

return a + mult(a, b-1)
	

6.0001	LECTURE	6	 14	

MATHEMATICAL INDUCTION

§	To	prove	a	statement	indexed	on	integers	is	true	for	all	
values	of	n:	
◦ Prove	it	is	true	when	n	is	smallest	value	(e.g.	n	=	0	or	n	=	1)	
◦ Then	prove	that	if	it	is	true	for	an	arbitrary	value	of	n,	one	
can	show	that	it	must	be	true	for	n+1	

6.0001	LECTURE	6	 15

EXAMPLE OF INDUCTION

§	0	+	1	+	2	+	3	+	…	+	n	=	(n(n+1))/2	

§	Proof:	
◦ If	n	=	0,	then	LHS	is	0	and	RHS	is	0*1/2	=	0,	so	true	
◦ Assume	true	for	some	k,	then	need	to	show	that	
										0	+	1	+	2	+	…	+	k	+	(k+1)	=	((k+1)(k+2))/2	
◦ LHS	is	k(k+1)/2	+	(k+1)	by	assumpSon	that	property	holds	for	
problem	of	size	k	

◦ This	becomes,	by	algebra,	((k+1)(k+2))/2	
◦ Hence	expression	holds	for	all	n	>=	0	

6.0001	LECTURE	6	 16	

RELEVANCE TO CODE?

§	Same	logic	applies	

def mult(a, b):

 if b == 1:

return a

 else:

return a + mult(a, b-1)

§	Base	case,	we	can	show	that	mult must	return	correct	answer	

§	For	recursive	case,	we	can	assume	that	mult correctly	returns	an	
answer	for	problems	of	size	smaller	than	b,	then	by	the	addiSon	step,	it	
must	also	return	a	correct	answer	for	problem	of	size	b	

§	Thus	by	inducSon,	code	correctly	returns	answer	

	
6.0001	LECTURE	6	 17	

TOWERS OF HANOI

§ The	story:
◦ 3	tall	spikes
◦ Stack	of	64	different	sized	discs	–	start	on	one	spike
◦ Need	to	move	stack	to	second	spike	(at	which	point
universe	ends)

◦ Can	only	move	one	disc	at	a	Sme,	and	a	larger	disc	can
never	cover	up	a	small	disc

6.0001	LECTURE	6	 18	

TOWERS OF HANOI

§	Having	seen	a	set	of	examples	of	different	sized	
stacks,	how	would	you	write	a	program	to	print	out	the	
right	set	of	moves?	

§	Think	recursively!	
◦ Solve	a	smaller	problem	
◦ Solve	a	basic	problem	
◦ Solve	a	smaller	problem	

6.0001	LECTURE	6	 19

6.0001	LECTURE	6	 20	

def printMove(fr, to):

 print('move from ' + str(fr) + ' to ' + str(to))

def Towers(n, fr, to, spare):

 if n == 1:

printMove(fr, to)

 else:

Towers(n-1, fr, spare, to)

Towers(1, fr, to, spare)

Towers(n-1, spare, to, fr)

RECURSION WITH MULTIPLE
BASE CASES

§	Fibonacci	numbers	
◦ Leonardo	of	Pisa	(aka	Fibonacci)	modeled	the	following	
challenge	
◦ Newborn	pair	of	rabbits	(one	female,	one	male)	are	put	in	a	pen	
◦ Rabbits	mate	at	age	of	one	month	
◦ Rabbits	have	a	one	month	gestaSon	period	
◦ Assume	rabbits	never	die,	that	female	always	produces	one	new	
pair	(one	male,	one	female)	every	month	from	its	second	month	
on.	

◦ How	many	female	rabbits	are	there	at	the	end	of	one	year?	

6.0001	LECTURE	6	 21

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 22	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 23	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 24

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 25	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 26

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 27	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 28	

6.0001	LECTURE	6	 29	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 30	

Demo	courtesy	of	Prof.	Denny	Freeman	and	Adam	Hartz	

6.0001	LECTURE	6	 31	

FIBONACCI

	 Ayer	one	month	(call	it	0)	–	1	female	

	 Ayer	second	month	–	sSll	1	female	(now	
pregnant)	

	 Ayer	third	month	–	two	females,	one	pregnant,	
one	not	

	 In	general,	females(n)	=	females(n-1)	+	
females(n-2)	
◦ Every	female	alive	at	month	n-2	will	produce	one	
female	in	month	n;	

◦ These	can	be	added	those	alive	in	month	n-1	to	
get	total	alive	in	month	n	

Month	 Females	

0	 1	

1	 1	

2	 2	

3	 3	

4	 5	

5	 8	

6	 13	

6.0001	LECTURE	6	 32	

FIBONACCI

§	Base	cases:	
◦ Females(0)	=	1	
◦ Females(1)	=	1	

§	Recursive	case	
◦ Females(n)	=	Females(n-1)	+	Females(n-2)	

6.0001	LECTURE	6	 33	

6.0001	LECTURE	6	 34

FIBONACCI

def fib(x):

 """assumes x an int >= 0

returns Fibonacci of x""”

 if x == 0 or x == 1:

return 1

 else:

return fib(x-1) + fib(x-2)

RECURSION ON NON-
NUMERICS

§ how	to	check	if	a	string	of	characters	is	a	palindrome,	i.e.,
reads	the	same	forwards	and	backwards	
◦ “Able	was	I,	ere	I	saw	Elba”	–	avributed	to	Napoleon	
◦ “Are	we	not	drawn	onward,	we	few,	drawn	onward	to	new	era?”	–	
avributed	to	Anne	Michaels	

35

Image courtesy of wikipedia, in the public domain. By Larth_Rasnal (Own work) [GFDL (https://www.gnu.org/licenses/fdl-1.3.en.html) or
CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.

6.0001	LECTURE	6	

https://en.wikipedia.org/wiki/Napoleon#/media/File:Jacques-Louis_David_-_The_Emperor_Napoleon_in_His_Study_at_the_Tuileries_-_Google_Art_Project.jpg
https://www.gnu.org/licenses/fdl-1.3.en.html
https://creativecommons.org/licenses/by/3.0

SOLVING RECURSIVELY?

§	First,	convert	the	string	to	just	characters,	by	stripping	
out	punctuaSon,	and	converSng	upper	case	to	lower	
case	

§	Then	
◦ Base	case:	a	string	of	length	0	or	1	is	a	palindrome	
◦ Recursive	case:	
◦ If	first	character	matches	last	character,	then	is	a	palindrome	if	
middle	secSon	is	a	palindrome 		

	

6.0001	LECTURE	6	 36	

EXAMPLE

§ ‘Able	was	I,	ere	I	saw	Elba’	à	‘ablewasiereisawleba’	

§ isPalindrome(‘ablewasiereisawleba’)	
is	same	as		
◦ ‘a’ == ‘a’ and	
isPalindrome(‘blewasiereisawleb’)

6.0001	LECTURE	6	 37	

6.0001	LECTURE	6	 38	

def isPalindrome(s):

 def toChars(s):
s = s.lower()
ans = ''
for c in s:

if c in 'abcdefghijklmnopqrstuvwxyz':
ans = ans + c

return ans

 def isPal(s):
if len(s) <= 1:

return True
else:

return s[0] == s[-1] and isPal(s[1:-1])

 return isPal(toChars(s))

	
	

DIVIDE AND CONQUER

§	an	example	of	a	“divide	and	conquer”	algorithm	

§	solve	a	hard	problem	by	breaking	it	into	a	set	of	sub-
problems	such	that:	
◦ sub-problems	are	easier	to	solve	than	the	original	
◦ soluSons	of	the	sub-problems	can	be	combined	to	solve	
the	original	

6.0001	LECTURE	6	 39

DICTIONARIES

6.0001	LECTURE	6	 40	

HOW TO STORE
STUDENT INFO

§	so	far,	can	store	using	separate	lists	for	every	info	
names = ['Ana', 'John', 'Denise', 'Katy']

grade = ['B', 'A+', 'A', 'A']

course = [2.00, 6.0001, 20.002, 9.01]

§	a	separate	list	for	each	item	
§	each	list	must	have	the	same	length	
§	info	stored	across	lists	at	same	index,	each	index	refers	to	
info	for	a	different	person	
	

6.0001	LECTURE	6	 41	

HOW TO UPDATE/RETRIEVE
STUDENT INFO

def get_grade(student, name_list, grade_list, course_list):

 i = name_list.index(student)

 grade = grade_list[i]

 course = course_list[i]

 return (course, grade)

§	messy	if	have	a	lot	of	different	info	to	keep	track	of	

§	must	maintain	many	lists	and	pass	them	as	arguments	

§	must	always	index	using	integers	

§	must	remember	to	change	mulSple	lists	
6.0001	LECTURE	6	 42	

A BETTER AND CLEANER WAY –
A DICTIONARY

§	nice	to	index	item	of	interest	directly	(not	always	int)	

§	nice	to	use	one	data	structure,	no	separate	lists	

	A	list 	 	 	 	A	dic0onary	

	 Elem	1	

Elem	2	

Elem	3	

Elem	4	

…	

Key	1	

Key	2	

Key	3	

Key	4	

…	

Val	1	

Val	2	

Val	3	

Val	4	

…	

0	

1	

2	

3	

…	

6.0001	LECTURE	6	 43	

A PYTHON DICTIONARY

§	store	pairs	of	data	

• 	key	
• 	value	

my_dict = {}

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

Key	1	

Key	2	

Key	3	

…	

Val	1	

Val	2	

Val	3	

…	

key1				val1	 key2					val2	 key3											val3	 key4						val4	

6.0001	LECTURE	6	 44	

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

DICTIONARY LOOKUP

§	similar	to	indexing	into	a	list	

§	looks	up	the	key	

§	returns	the	value	associated	
with	the	key	 'A'

§	if	key	isn’t	found,	get	an	error	

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

grades['John'] à evaluates	to	'A+'

grades['Sylvan'] à gives	a	KeyError	

6.0001	LECTURE	6	 45	

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

§	add	an	entry	
grades['Sylvan'] = 'A'

§	test	if	key	in	dicSonary	
'John' in grades à returns True

 'Daniel' in grades à returns False

§	delete	entry	
del(grades['Ana'])

6.0001	LECTURE	6	 46	

'Sylvan' 'A'

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY
OPERATIONS

grades = {'Ana':'B', 'John':'A+', 'Denise':'A', 'Katy':'A'}

§	get	an	iterable	that	acts	like	a	tuple	of	all	keys	
 grades.keys() à returns ['Denise','Katy','John','Ana']

§	get	an	iterable	that	acts	like	a	tuple	of	all	values	
grades.values() à returns ['A', 'A', 'A+', 'B']

6.0001	LECTURE	6	 47	

'Ana'

'Denise'

'John'

'Katy'

'B'

'A'

'A+'

'A'

DICTIONARY KEYS and VALUES

§	values		

• 	any	type	(immutable	and	mutable)	
• 	can	be	duplicates	
• 	dicSonary	values	can	be	lists,	even	other	dicSonaries!	

§	keys	
• 	must	be	unique		
• 	immutable	type	(int,	float,	string,	tuple,bool)	

• actually	need	an	object	that	is	hashable,	but	think	of	as	immutable	as	all	
immutable	types	are	hashable	

• 	careful	with	float	type	as	a	key	

§	no	order	to	keys	or	values!	
d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}	

6.0001	LECTURE	6	 48	

list vs dict

6.0001	LECTURE	6	 49	

§	ordered	sequence	of	 §	matches	“keys”	to	
elements	 “values”	

§	look	up	elements	by	an	 §	look	up	one	item	by	
integer	index another	item	

§	indices	have	an	order	 §	no	order	is	guaranteed	

§	index	is	an	integer	 §	key	can	be	any	
immutable	type	

EXAMPLE: 3 FUNCTIONS TO
ANALYZE SONG LYRICS

1)	create	a	frequency	dic0onary	mapping	str:int

2)	find	word	that	occurs	the	most	and	how	many	Smes	
• 	use	a	list,	in	case	there	is	more	than	one	word	
• 	return	a	tuple	(list,int)	for		(words_list,	highest_freq)	

3)	find	the	words	that	occur	at	least	X	0mes	
• 	let	user	choose	“at	least	X	Smes”,	so	allow	as	parameter	
• 	return	a	list	of	tuples,	each	tuple	is	a	(list, int)
containing	the	list	of	words	ordered	by	their	frequency	

• 	IDEA:	From	song	dicSonary,	find	most	frequent	word.	Delete	
most	common	word.	Repeat.	It	works	because	you	are	

g	dicSonary.	

6.0001	LECTURE	6	 50

mutaSng	the	son

CREATING A DICTIONARY

def lyrics_to_frequencies(lyrics):
 myDict = {}

 for word in lyrics:

if word in myDict:

myDict[word] += 1

else:

myDict[word] = 1

 return myDict

6.0001	LECTURE	6	 51	

USING THE DICTIONARY

def most_common_words(freqs):

 values = freqs.values()

 best = max(values)

 words = []

 for k in freqs:

if freqs[k] == best:

words.append(k)

 return (words, best)

6.0001	LECTURE	6	 52

LEVERAGING DICTIONARY
PROPERTIES

def words_often(freqs, minTimes):
 result = []
 done = False
 while not done:

temp = most_common_words(freqs)
if temp[1] >= minTimes:

result.append(temp)
for w in temp[0]:

del(freqs[w])
else:

done = True
 return result

print(words_often(beatles, 5))

6.0001	LECTURE	6	 53	

FIBONACCI RECURSIVE CODE

def fib(n):

 if n == 1:

return 1

 elif n == 2:

return 2

 else:

return fib(n-1) + fib(n-2)

§	two	base	cases	
§	calls	itself	twice	
§	this	code	is	inefficient	

6.0001	LECTURE	6	 54	

INEFFICIENT FIBONACCI
fib(n) = fib(n-1) + fib(n-2)

§	recalcula0ng	the	same	values	many	Smes!	
§	could	keep	track	of	already	calculated	values	

6.0001	LECTURE	6	 55	

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(1)

fib(2) fib(1)

fib(2)

FIBONACCI WITH A
DICTIONARY

def fib_efficient(n, d):
 if n in d:

return d[n]
 else:

ans = fib_efficient(n-1, d) + fib_efficient(n-2, d)
d[n] = ans
return ans

d = {1:1, 2:2}
print(fib_efficient(6, d))

§	do	a	lookup	first	in	case	already	calculated	the	value	
§	modify	dic0onary	as	progress	through	funcSon	calls	

6.0001	LECTURE	6	 56	

EFFICIENCY GAINS

§ Calling	fib(34)	results	in	11,405,773	recursive	calls	to
the	procedure	
§ Calling	fib_efficient(34)	results	in	65	recursive	calls	to
the	procedure	
§	Using	dicSonaries	to	capture	intermediate	results	can	
be	very	efficient	
§	But	note	that	this	only	works	for	procedures	without	
side	effects	(i.e.,	the	procedure	will	always	produce	the	
same	result	for	a	specific	argument	independent	of	any	
other	computaSons	between	calls)	

6.0001	LECTURE	6	 57

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

