RECURSION,
D\CT\ONARIES

(download slides and .py files and follow along!)

6.0001 LECTURE 6

6.0001 LECTURE 6

QUIZ PREP

= 3 paper and an online component
= open book/notes
= not open Internet, not open computer

= start printing out whatever you may want to bring

6.0001 LECTURE 6 2

LAST TIME

= tuples - immutable
= |ists - mutable

= aliasing, cloning

" mutability side effects

TODAY

= recursion — divide/decrease and conquer

= dictionaries — another mutable object type

6.0001 LECTURE 6 4

RECURSION

Recursion is the process of repeating items in a self-s
imilar way.

6.0001 LECTURE 6 5

WHAT IS RECURSION?

= Algorithmically: a way to design solutions to problems
by divide-and-conquer or decrease-and-conquer

o reduce a problem to simpler versions of the same
problem

= Semantically: a programming technique where a
function calls itself
° in programming, goal is to NOT have infinite recursion

o must have 1 or more base cases that are easy to solve

o must solve the same problem on some other input with the goal
of simplifying the larger problem input

6.0001 LECTURE 6 6

ITERATIVE ALGORITHMS SO FAR

= |ooping constructs (Whi | € and f or loops) lead to
iterative algorithms

= can capture computation in a set of state variables
that update on each iteration through loop

MULTIPLICATION —
TERATIVE SOLUTION

= “multiply a * b” is equivalent to “add a to itself b times”

a+a+a+a+ . +a
= capture state by

o an iteration number (1) starts at b ﬂ J J J
Oa 1la 2a 3a 4a

I < 1-1andstopwhenO
> a current value of computation (result)
result < result + a

\\}!
def mult _iter(a, b): R

—_— ' . CO((\Q .3\0\6
result =0 S e e
WhiTe b > O @

— (,\)(('\(\% ot
result += a RN
b -=1 o
o

return result

6.0001 LECTURE 6 8

MULTIPLICATION —
RECURSIVE SOLUTION

" recursive step ab=a+tat+tatat.ta |
* think h d - oo
think how to reduce 0
problem toa.simpler/ =at+tatatat.ta “\«\es
smaller version of v .Y
W
same problem o>, 50
_ r © Q
= a +la * (b-1) Que
€
" base case
* keep reducing def mult(a, b): o
problem until reach a PRr— bac,eff‘) .
: == 1: N
simple case that can (e&s\
be solved directly return a xe®
 whenb=1,a*b=a el se:
return a + nult(a, b-1)

6.0001 LECTURE 6 9

FACTORIAL

n! = n*(n-L)*(n-2)*(n-3)* .. * 1

= for what n do we know the factorial?
n=1 -> ifn==1: ?°

25°
return 1 ©

" how to reduce problem? Rewrite in terms of
something simpler to reach base case
n*(n-1)! > else:

return n*factorial(n-1)
S\,QQ

N
ecO(SN
<

6.0001 LECTURE 6 10

RECURSIVE
FUNCTION
SCOPE
EXAMPLE

Global scope fact scope
(call w/ n=4)

fact = Some

def fact(n):
1f n == 1:
return 1
el se:
return n*fact(n-1)

print(fact(4))

fact scope fact scope fact scope
(call w/ n=3) (call w/ n=2) (call w/ n=1)

6.0001 LECTURE 6 11

SOME OBSERVATIONS

Yy, 56, %
/ A, L
N e, S, Vg

, . , .
= each recursive call to a function creates its ot @%f@
own scope/environment - &C%@j’@o,«
= bindings of variables in a scope are not
changed by recursive call _/

" flow of control passes back to previous
scope once function call returns value

6.0001 LECTURE 6 12

ITERATION vs. RECURSION

def factorial iter(n): def factorial (n):
prod =1 i f n ==
for 1 1 n range(l, n+l): return 1
prod *= | el se:
return prod return n*factorial (n-1)

" recursion may be simpler, more intuitive
" recursion may be efficient from programmer POV
" recursion may not be efficient from computer POV

6.0001 LECTURE 6 13

INDUCTIVE REASONING

* How do we know that our
recursive code will work?

= mult_1ter terminates
because b is initially positive,
and decreases by 1 each time
around IooB; thus must
eventually be

= mul t called with b =1 has no

recursive call and stops

= mult called with b > 1 makes

a recursive call with a smaller
version of b; must eventually
reach callwithb=1

come less than 1

def

def

6.0001 LECTURE 6

mult iter(a, b):
result =0

while b > 0:
result += a
b -=1

return result

mult(a, b):
't b == 1:

return a
el se:

return a + mult(a, b-1)

14

MAT

EMATICAL INDUCTION

" To prove a statement indexed on integers is true for all

values of n:

o Prove it is true when n is smallest value (e.g. n=0o0rn=1)

> Then prove that if it is true for an arbitrary value of n, one
can show that it must be true for n+1

EXAMPLE OF INDUCTION

"0+1+2+3+..+n=(n(n+1))/2

= Proof:
o |If n=0, then LHS is 0 and RHS is 0*1/2 = 0, so true
o Assume true for some k, then need to show that

O+1+2+..+k+(k+1)=((k+1)(k+2))/2

o LHS is k(k+1)/2 + (k+1) by assumption that property holds for
problem of size k

> This becomes, by algebra, ((k+1)(k+2))/2
> Hence expression holds foralln>=0

6.0001 LECTURE 6

16

RELEVANCE TO CODE?

= Same logic applies
def nult(a, b):
If b == 1:
return a
el se:
return a + nult(a, b-1)
= Base case, we can show that mul t must return correct answer

= For recursive case, we can assume that nul t correctly returns an
answer for problems of size smaller than b, then by the addition step, it
must also return a correct answer for problem of size b

= Thus by induction, code correctly returns answer

6.0001 LECTURE 6 17

TOWERS OF HANOI

" The story:
o 3 tall spikes
o Stack of 64 different sized discs — start on one spike

> Need to move stack to second spike (at which point
universe ends)

o Can only move one disc at a time, and a larger disc can
never cover up a small disc

6.0001 LECTURE 6 18

TOWERS OF HANOI

=" Having seen a set of examples of different sized
stacks, how would you write a program to print out the
right set of moves?

=" Think recursively!
> Solve a smaller problem
> Solve a basic problem
> Solve a smaller problem

6.0001 LECTURE 6 19

def printMve(fr, to):

print('nmove from' + str(fr) + ' to

def Towers(n, fr, to, spare):
1f n ==
print Move(fr, to)
el se:
Towers(n-1, fr, spare, to)
Towers(1l, fr, to, spare)

Towers(n-1, spare, to, fr)

6.0001 LECTURE 6

+ str(to))

RECURSION WITH MULTIPLE
BASE CASES

= Fibonacci numbers

o Leonardo of Pisa (aka Fibonacci) modeled the following
challenge
> Newborn pair of rabbits (one female, one male) are put in a pen

o Rabbits mate at age of one month
o Rabbits have a one month gestation period

o Assume rabbits never die, that female always produces one new
pair (one male, one female) every month from its second month
on.

> How many female rabbits are there at the end of one year?

6.0001 LECTURE 6

21

g

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 6

22

A T

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 6

23

At

at &

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 6

24

at &

i

A T

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 6

25

A T

at i

i

At

at i

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 6

26

AT T

ar i
e @

AT

éﬁé\@ﬁg -

Demo courtesy of Prof. Denny Freeman and Adam Hartz

6.0001 LECTURE 6

27

ar el dk

g

2t

A T

AT

Demo courtesy of Prof. Denny Freeman and Adam Hartz

A T

A T

A T AT T

at i at i at i
S M A stk
at at i at
S5 A e BE
at i at 1 Al

St

al e

EIANE T

Demo cou

rtesy of Prof. Denny Freeman and Adam Hartz

i
r

Bk
I\
B

ST Iy

Ei
e

eI
199

B

ar % % R

Pt sl TN

A
G

A
At

i"*m

AT
> < “ &%&

At
ar
ar

sy of Prof. Denny Freeman and Adam Hartz

Mo courte

FIBONACCI

After one month (call it 0) — 1 female Month | Females

After second month — still 1 female (now 0 1

pregnant)

After third month — two females, one pregnant,

one not

In general, females(n) = females(n-1) +

females(n-2)

o Every female alive at month n-2 will produce one
female in month n;

o These can be added those alive in month n-1 to
get total alive in month n

6.0001 LECTURE 6 32

FIBONACCI

= Base cases:
o Females(0) =1
o Females(1) =1

= Recursive case
> Females(n) = Females(n-1) + Females(n-2)

FIBONACCI

def fib(x):

"rrtassunes X an int >= 0

returns Fi bonacci of x""”
If x == 0 or x ==

return 1
el se:

return fib(x-1) + fib(x-2)

6.0001 LECTURE 6 34

RECURSION ON NON-
NUMERICS

= how to check if a string of characters is a palindrome, i.e.,
reads the same forwards and backwards
o “Able was |, ere | saw Elba” — attributed to Napoleon

o “Are we not drawn onward, we few, drawn onward to new era?” —
attributed to Anne Michaels

Image courtesy of wikipedia, in the public domain. By Larth_Rasnal (Own work) [GFDL (https://www.gnu.org/licenses/fdl-1.3.en.html) or
CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.

6.0001 LECTURE 6 35

https://en.wikipedia.org/wiki/Napoleon#/media/File:Jacques-Louis_David_-_The_Emperor_Napoleon_in_His_Study_at_the_Tuileries_-_Google_Art_Project.jpg
https://www.gnu.org/licenses/fdl-1.3.en.html
https://creativecommons.org/licenses/by/3.0

SOLVING RECURSIVELY?

= First, convert the string to just characters, by stripping
out punctuation, and converting upper case to lower
case

" Then
o Base case: a string of length O or 1 is a palindrome

o Recursive case:

o |f first character matches last character, then is a palindrome if
middle section is a palindrome

6.0001 LECTURE 6 36

EXAMPLE

=‘Able was |, ere | saw Elba’ = ‘ablewasiereisawleba’

=1sPalindrome(@blewa3|ere|sawleb@
IS Same as \

and
|sPaI|ng%ome(‘blewasiereisawleb’)
Y

6.0001 LECTURE 6

37

def

| sPal i ndrone(s):

def toChars(s):
s = s.lower()
ans = "'
for c in s:
i f c in 'abcdef ghijkl mopqgrstuvwxyz':
ans = ans + c
return ans

def isPal (s):
1 f len(s) <= 1:
return True
el se:

return s[0] == s[-1] and isPal (s[1:-1])

return isPal (toChars(s))

6.0001 LECTURE 6

DIVIDE AND CONQUER

= an example of a “divide and conquer” algorithm

= solve a hard problem by breaking it into a set of sub-
problems such that:

> sub-problems are easier to solve than the original

o solutions of the sub-problems can be combined to solve
the original

6.0001 LECTURE 6

39

DICTIONARIES

HOW TO STORE
STUDENT INFO

" so far, ca e using separate lists for every info
names = "John", "Denise”, "Katy"]
grade = ", "AT, "AT]

course = 56.0001, 20.002, 9.01]

" 3 separate list for each item
= each list must have the same length

= info stored across lists at same index, each index refers to
info for a different person

6.0001 LECTURE 6 41

HOW TO UPDATE/RETRIEVE
STUDENT INFO

def get grade(student, nane |ist, grade |ist, course |ist):

I = name_l|ist.index(student)
grade = grade list[i]
course = course list[i]

return (course, grade)

= messy if have a lot of different info to keep track of
" must maintain many lists and pass them as arguments
= must always index using integers

" must remember to change multiple lists

6.0001 LECTURE 6 42

A
A

BETTER AND CLEANER WAY —

DICTIONARY

" nice to index item of interest directly (not always int)

" nice to use one data structure, no separate lists

A list A dictionary
0 Elem 1 Key 1 Val 1
1 Elem 2 Key 2 Val 2
2 Elem 3 Key 3 Val 3

3 Elem 4 Key 4 Val 4

A PYTHON DICTIONARY

= store pairs of data

* key
* value
N
o
my dict = {}

grades = {"Ana":"B", "John":"A+", "Denise":"A", "Katy":"A"}
(I I (I N |

keyl wvall key2 val2 key3 val3 keyd val4

6.0001 LECTURE 6 44

DICTIONARY LOOKUP

= similar to indexing into a list

= Jooks up the key

= returns the value associated
with the key

= if key isn’t found, get an error

grades = {"Ana":"B", "John":"A+", "Denise":"A", "Katy":"A"}
grades["John"] - evaluatesto "A+*

grades["Sylvan"] - gives a KeyError

6.0001 LECTURE 6 45

CTIONARY
PERATIONS

O O

grades = {"Ana":"B", "John":"A+", "Denise”":"A", "Katy":"A"}
= add an entry

grades|"Sylvan®] = "A"
= test if key in dictionary

John® 1n grades - returns True
"Daniel”™ 1In grades - returns False

= delete entry
del(grades[“Ana“])

6.0001 LECTURE 6 46

CTIONARY
PERATIONS

O O

grades = {"Ana":"B", "John":"A+", "Denise":"A", "Katy":"A"}

d@ﬁb
RN
= get an iterable that acts like a tuple of all keys <‘°¢3e<

of
grades.keys() - returns ["Denise”, "Katy", "John","Ana"]

= get an iterable that acts like a tuple of all values
grades.values() = returns ["A", A", "A+", "B"] «02°

6.0001 LECTURE 6 'y

DICTIONARY KEYS and VALUES

" values
e any type (immutable and mutable)

e can be duplicates
* dictionary values can be lists, even other dictionaries!

= keys
* must be unique

* immutable type (int, float, string, tuple,bool)

 actually need an object that is hashable, but think of as immutable as all
immutable types are hashable

 careful with Float type as a key

" no order to keys or values!
d = {4:{1:0}, (1,3):"twelve"™, "const":[3.14,2.7,8.44]}

6.0001 LECTURE 6 48

list VS dict

= ordered sequence of " matches “keys” to
elements “values”

= look up elements by an " look up one item by
integer index another item

" indices have an order " no order is guaranteed
" index is an integer = key can be any

immutable type

6.0001 LECTURE 6 49

EXAMPLE: 3 FUNCTIONS TO
ANALYZE SONG LYRICS

1) create a frequency dictionary mapping Str:int

2) find word that occurs the most and how many times
e use a list, in case there is more than one word

* return atuple (hIsSt, Int) for (words_list, highest_freq)

3) find the words that occur at least X times
* let user choose “at least X times”, so allow as parameter

 return a list of tuples, each tupleisa (I1st, Int)
containing the list of words ordered by their frequency

* IDEA: From song dictionary, find most frequent word. Delete
most common word. Repeat. It works because you are
mutating the song dictionary.

6.0001 LECTURE 6 50

CREATING A DICTIONARY

def lyrics to frequencies(lyrics):

: (W
nyDct = {} .e@,@me .
for word in lyrics: o o

' «e?
i f word in nyDict: Cfg&wa *
\
nyD ct[word] += 1 @ﬁ@w
el se: >

nyD ct[word] =1
return nmyDi ct

USING T

C

E DICTIONARY

ef nmost _common_words(fregs): o
S
\S1 .
val ues = fregs.values() @
best = max(val ues) “@igwﬁ\
B 20° S
\ke\\
words = [] o
. «e®
for k in fregs: o (o™

| f fregs[k] == best:

return

wor ds. append(k)
(wor ds, best)

6.0001 LECTURE 6

52

_EVERAGING DICTIONARY
PROPERTIES

def words_often(freqs, m nTi nes):
result =[]
done = Fal se
whi | e not done:
tenp = nost_common_words(freqs)

I f tenmp[1l] >= m nTi nmes: oﬂw?
resul t. append(tenp) .egyﬁoagﬁﬁ
for win tenp[O]: @06\(0’&‘\“‘@@‘6
del (fregs[w) &ﬁf;ﬁp“g
el se: I

done = True
return result

print(words _often(beatles, 5))

6.0001 LECTURE 6

53

FIBONACCI RECURSIVE CODE

def fib(n):
'f n == 1:
return 1
elilf n == 2:
return 2
el se:
return fib(n-1) + fib(n-2)
= two base cases

= calls itself twice

= this code is inefficient

INEFFICIENT FIBONACCI
fib(n) = Ffib(n-1) + Fib(n-2)

fib(5)

fib(2) fib(1)

= recalculating the same values many times!

= could keep track of already calculated values

-IBONACCI WITH A
DICTIONARY

def fib efficient(n, d): RSP
if nin d: . 9 c,o“f:;\@“o“
return d[n] VN&Q&“«@
el se: éﬁe

ans = fib efficient(n-1, d) + fib_efficient(n-2,
d[n] = ans
return ans

S
6\0“0(;5
d = {1:1, 2:2} _&@mﬁsedﬁ
print(fib efficient(6, d)) \‘;4.\«\\3")

" do a lookup first in case already calculated the value

= modify dictionary as progress through function calls

6.0001 LECTURE 6 56

EFFICIENCY GAINS

= Calling fib(34) results in 11,405,773 recursive calls to
the procedure

= Calling fib_efficient(34) results in 65 recursive calls to
the procedure

= Using dictionaries to capture intermediate results can
be very efficient

= But note that this only works for procedures without
side effects (i.e., the procedure will always produce the
same result for a specific argument independent of any
other computations between calls)

6.0001 LECTURE 6 57

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

