
TESTING, DEBUGGING,
EXCEPTIONS, ASSERTIONS
(download slides and .py files and follow along!)

6.0001 LECTURE 7

6.0001 LECTURE 7 1

WE AIM FOR HIGH QUALITY –
AN ANALOGY WITH SOUP

You are making soup but bugs keep falling in from the
ceiling. What do you do?

 check soup for bugs
• testing

 keep lid closed
• defensive

programming

 clean kitchen
• eliminate source

of bugs
Analogy thanks to Prof Srini Devadas

6.0001 LECTURE 7 2

DEFENSIVE PROGRAMMING
• Write specifications for functions
• Modularize programs
• Check conditions on inputs/outputs (assertions)

TESTING/VALIDATION
• Compare input/output

pairs to specification
• “It’s not working!”
• “How can I break my

program?”

DEBUGGING
• Study events leading up

to an error
• “Why is it not working?”
• “How can I fix my

program?”

6.0001 LECTURE 7 3

SET YOURSELF UP FOR EASY
TESTING AND DEBUGGING
 from the start, design code to ease this part

 break program up into modules that can be tested
and debugged individually

 document constraints on modules
• what do you expect the input to be?

• what do you expect the output to be?

 document assumptions behind code design

6.0001 LECTURE 7 4

WHEN ARE YOU READY TO
TEST?
 ensure code runs
• remove syntax errors

• remove static semantic errors

• Python interpreter can usually find these for you

 have a set of expected results
• an input set

• for each input, the expected output

6.0001 LECTURE 7 5

CLASSES OF TESTS
 Unit testing
• validate each piece of program

• testing each function separately

 Regression testing
• add test for bugs as you find them

• catch reintroduced errors that were previously fixed

 Integration testing
• does overall program work?

• tend to rush to do this

6.0001 LECTURE 7 6

TESTING APPROACHES
 intuition about natural boundaries to the problem
def is_bigger(x, y):

""" Assumes x and y are ints

Returns True if y is less than x, else False """

• can you come up with some natural partitions?

 if no natural partitions, might do random testing
• probability that code is correct increases with more tests
• better options below

 black box testing
• explore paths through specification

 glass box testing
• explore paths through code

6.0001 LECTURE 7 7

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

 designed without looking at the code

 can be done by someone other than the implementer to
avoid some implementer biases

 testing can be reused if implementation changes

 paths through specification
• build test cases in different natural space partitions

• also consider boundary conditions (empty lists, singleton
list, large numbers, small numbers)

BLACK BOX TESTING

6.0001 LECTURE 7 8

def sqrt(x, eps):

""" Assumes x, eps floats, x >= 0, eps > 0

Returns res such that x-eps <= res*res <= x+eps """

BLACK BOX TESTING

6.0001 LECTURE 7 9

CASE x eps

boundary 0 0.0001

perfect square 25 0.0001

less than 1 0.05 0.0001

irrational square root 2 0.0001

extremes 2 1.0/2.0**64.0

extremes 1.0/2.0**64.0 1.0/2.0**64.0

extremes 2.0**64.0 1.0/2.0**64.0

extremes 1.0/2.0**64.0 2.0**64.0

extremes 2.0**64.0 2.0**64.0

GLASS BOX TESTING
 use code directly to guide design of test cases

 called path-complete if every potential path through
code is tested at least once

 what are some drawbacks of this type of testing?
• can go through loops arbitrarily many times

• missing paths

 guidelines
• branches

• for loops

• while loops

6.0001 LECTURE 7 10

GLASS BOX TESTING
def abs(x):

""" Assumes x is an int

Returns x if x>=0 and –x otherwise """

if x < -1:

return –x

else:

return x

 a path-complete test suite could miss a bug

 path-complete test suite: 2 and -2

 but abs(-1) incorrectly returns -1

 should still test boundary cases

6.0001 LECTURE 7 11

DEBUGGING
 steep learning curve

 goal is to have a bug-free program

 tools
• built in to IDLE and Anaconda

• Python Tutor

• print statement

• use your brain, be systematic in your hunt

6.0001 LECTURE 7 12

PRINT STATEMENTS
 good way to test hypothesis

 when to print
• enter function

• parameters

• function results

 use bisection method
• put print halfway in code

• decide where bug may be depending on values

6.0001 LECTURE 7 13

DEBUGGING STEPS
 study program code
• don’t ask what is wrong

• ask how did I get the unexpected result

• is it part of a family?

 scientific method
• study available data

• form hypothesis

• repeatable experiments

• pick simplest input to test with

6.0001 LECTURE 7 14

ERROR MESSAGES – EASY
 trying to access beyond the limits of a list
test = [1,2,3] then test[4]  IndexError

 trying to convert an inappropriate type
int(test)  TypeError

 referencing a non-existent variable
a  NameError

 mixing data types without appropriate coercion
'3'/4  TypeError

 forgetting to close parenthesis, quotation, etc.
a = len([1,2,3]

print(a)  SyntaxError

6.0001 LECTURE 7 15

LOGIC ERRORS - HARD
 think before writing new code

 draw pictures, take a break

 explain the code to
• someone else

• a rubber ducky

6.0001 LECTURE 7 16

DON’T DO
• Write entire program
• Test entire program
• Debug entire program

• Write a function
• Test the function, debug the function
• Write a function
• Test the function, debug the function
• *** Do integration testing ***

• Change code
• Remember where bug was
• Test code
• Forget where bug was or what change

you made
• Panic

• Backup code
• Change code
• Write down potential bug in a

comment
• Test code
• Compare new version with old

version

6.0001 LECTURE 7 17

EXCEPTIONS AND ASSERTIONS
 what happens when procedure execution hits an
unexpected condition?

 get an exception… to what was expected
• trying to access beyond list limits

test = [1,7,4]

test[4]  IndexError

• trying to convert an inappropriate type
int(test)  TypeError

• referencing a non-existing variable
a  NameError

• mixing data types without coercion
'a'/4  TypeError

6.0001 LECTURE 7 18

OTHER TYPES OF EXCEPTIONS
 already seen common error types:
• SyntaxError: Python can’t parse program

• NameError: local or global name not found

• AttributeError: attribute reference fails

• TypeError: operand doesn’t have correct type

• ValueError: operand type okay, but value is illegal

• IOError: IO system reports malfunction (e.g. file not
found)

6.0001 LECTURE 7 19

DEALING WITH EXCEPTIONS
 Python code can provide handlers for exceptions

try:

a = int(input("Tell me one number:"))

b = int(input("Tell me another number:"))

print(a/b)

except:

print("Bug in user input.")

 exceptions raised by any statement in body of try are
handled by the except statement and execution continues
with the body of the except statement

6.0001 LECTURE 7 20

HANDLING SPECIFIC
EXCEPTIONS
 have separate except clauses to deal with a particular
type of exception
try:

a = int(input("Tell me one number: "))

b = int(input("Tell me another number: "))

print("a/b = ", a/b)

print("a+b = ", a+b)

except ValueError:

print("Could not convert to a number.")

except ZeroDivisionError:

print("Can't divide by zero")

except:

print("Something went very wrong.")

6.0001 LECTURE 7 21

OTHER EXCEPTIONS
 else:

• body of this is executed when execution of associated
try body completes with no exceptions

 finally:
• body of this is always executed after try, else and
except clauses, even if they raised another error or
executed a break, continue or return

• useful for clean-up code that should be run no matter
what else happened (e.g. close a file)

6.0001 LECTURE 7 22

WHAT TO DO WITH
EXCEPTIONS?
 what to do when encounter an error?

 fail silently:
• substitute default values or just continue

• bad idea! user gets no warning

 return an “error” value
• what value to choose?

• complicates code having to check for a special value

 stop execution, signal error condition
• in Python: raise an exception
raise Exception("descriptive string")

6.0001 LECTURE 7 23

EXCEPTIONS AS CONTROL
FLOW
 don’t return special values when an error occurred
and then check whether ‘error value’ was returned

 instead, raise an exception when unable to produce a
result consistent with function’s specification

raise <exceptionName>(<arguments>)

raise ValueError("something is wrong")

6.0001 LECTURE 7 24

EXAMPLE: RAISING AN
EXCEPTION

def get_ratios(L1, L2):

""" Assumes: L1 and L2 are lists of equal length of numbers

Returns: a list containing L1[i]/L2[i] """

ratios = []

for index in range(len(L1)):

try:

ratios.append(L1[index]/L2[index])

except ZeroDivisionError:

ratios.append(float('nan')) #nan = not a number

except:

raise ValueError('get_ratios called with bad arg')

return ratios

6.0001 LECTURE 7 25

EXAMPLE OF EXCEPTIONS
 assume we are given a class list for a subject: each
entry is a list of two parts
• a list of first and last name for a student

• a list of grades on assignments

 create a new class list, with name, grades, and an
average

6.0001 LECTURE 7 26

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],

[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],

[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

EXAMPLE
CODE

def get_stats(class_list):

new_stats = []

for elt in class_list:

new_stats.append([elt[0], elt[1], avg(elt[1])])

return new_stats

def avg(grades):

return sum(grades)/len(grades)

6.0001 LECTURE 7 27

[[['peter', 'parker'], [80.0, 70.0, 85.0]],

[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

ERROR IF NO GRADE FOR A
STUDENT
 if one or more students don’t have any grades,
get an error

test_grades = [[['peter', 'parker'], [10.0, 5.0, 85.0]],

[['bruce', 'wayne'], [10.0, 8.0, 74.0]],

[['captain', 'america'], [8.0,10.0,96.0]],

[['deadpool'], []]]

 get ZeroDivisionError: float division by zero
because try to
return sum(grades)/len(grades)

6.0001 LECTURE 7 28

OPTION 1: FLAG THE ERROR
BY PRINTING A MESSAGE
 decide to notify that something went wrong with a msg
def avg(grades):

try:

return sum(grades)/len(grades)

except ZeroDivisionError:

print('warning: no grades data')

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['deadpool'], [], None]]

6.0001 LECTURE 7 29

OPTION 2: CHANGE THE POLICY
 decide that a student with no grades gets a zero
def avg(grades):

try:

return sum(grades)/len(grades)

except ZeroDivisionError:

print('warning: no grades data')

return 0.0

 running on some test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 5.0, 85.0], 15.41666666],

[['bruce', 'wayne'], [10.0, 8.0, 74.0], 13.83333334],

[['captain', 'america'], [8.0, 10.0, 96.0], 17.5],

[['deadpool'], [], 0.0]]

6.0001 LECTURE 7 30

ASSERTIONS
 want to be sure that assumptions on state of
computation are as expected

 use an assert statement to raise an
AssertionError exception if assumptions not met

 an example of good defensive programming

316.0001 LECTURE 7

EXAMPLE

def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades)

 raises an AssertionError if it is given an empty list for
grades

 otherwise runs ok

326.0001 LECTURE 7

ASSERTIONS AS DEFENSIVE
PROGRAMMING
 assertions don’t allow a programmer to control
response to unexpected conditions

 ensure that execution halts whenever an expected
condition is not met

 typically used to check inputs to functions, but can be
used anywhere

 can be used to check outputs of a function to avoid
propagating bad values

 can make it easier to locate a source of a bug

336.0001 LECTURE 7

WHERE TO USE ASSERTIONS?
 goal is to spot bugs as soon as introduced and make
clear where they happened

 use as a supplement to testing

 raise exceptions if users supplies bad data input

 use assertions to
• check types of arguments or values

• check that invariants on data structures are met

• check constraints on return values

• check for violations of constraints on procedure (e.g. no
duplicates in a list)

346.0001 LECTURE 7

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

