OBJECT ORIENTED
PROGRAMMING

(download slides and .py files YR follow along!)

OBJECTS

= Python supports many different kinds of data

1234 3.14159 "Hello" (1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

= each is an object, and every object has:
* atype
* an internal data representation (primitive or composite)
* a set of procedures for interaction with the object

" an object is an instance of a type
e 1234 isaninstance of an int
e "hello" isaninstance of a string

6.0001 LECTURE 8 2

OBJECT ORIENTED
PROGRAMMING (OOP)

* EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

= can create new objects of some type

= can manipulate objects

= can destroy objects
* explicitly using del or just “forget” about them

* python system will reclaim destroyed or inaccessible
objects — called “garbage collection”

WHAT ARE OBJECTS?

= objects are a data abstraction
that captures...

(1) an internal representation
* through data attributes

(2) an interface for
interacting with object

* through methods
(aka procedures/functions)

e defines behaviors but
hides implementation

6.0001 LECTURE 8 4

-XAMPLE:
1,2,3,4] has type list

" how are lists represented internally? linked list of cells

1 = HES—EEER - EEEE - EEEN

" how to manipulate lists?
e L[i], L[i:73], +
* len(), min(), max(), del(L[1])
* L.append(),L.extend(),L.count(),L.index (),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()
" internal representation should be private

= correct behavior may be compromised if you manipulate
internal representation directly

6.0001 LECTURE 8 5

ADVANTAGES OF OOP

= bundle data into packages together with procedures
that work on them through well-defined interfaces

= divide-and-conquer development
* implement and test behavior of each class separately
* increased modularity reduces complexity

= classes make it easy to reuse code
* many Python modules define new classes

* each class has a separate environment (no collision on
function names)

* inheritance allows subclasses to redefine or extend a
selected subset of a superclass’ behavior

6.0001 LECTURE 8 6

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

= make a distinction between creating a class and
using an instance of the class

= creating the class involves
* defining the class name

 defining class attributes
* for example, someone wrote code to implement a list class

= using the class involves
* creating new instances of objects

* doing operations on the instances
* forexample, L=[1,2] and 1en (L)

6.0001 LECTURE 8 7

Implementing the class

DEFINE YOUR OWN TYPES

" use the class keyword to define a new type
(06\&\\96 AR

class||Coordinatel|(object) :

O® | |
c&e‘\'«‘“\o #define attributes here
\o
¢ = similar to def, indent code to indicate which statements are

part of the class definition

" the word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)

* Coordinate is asubclass of object
* object isasuperclass of Coordinate

6.0001 LECTURE 8 8

WHAT ARE ATTRIBUTES?

= data and procedures that “belong” to the class

= data attributes
* think of data as other objects that make up the class

* for example, a coordinate is made up of two numbers

* methods (procedural attributes)
* think of methods as functions that only work with this class

* how to interact with the object

* for example you can define a distance between two
coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8 9

DEFINING HOW TO CREATE AN
NSTANCE OF A CLASS

= first have to define how to create an instance of
object

= use a special method called init to

initialize some data attributes @l
({\"'\6 \0'\6(’
class Coordinate (object) : - édﬁé;meo
Qe o{’d&

def init (self],| x, y): <co

6.0001 LECTURE 8

ACTUALLY CREATING AN
INSTANCE OF A CLASS

e
Qq0\3@"
c =| Coordinate (3,4) eaoe 3
. : : AL 20
origin = Coordinate(0,0) C‘;‘\\Q‘ad&a‘iw
: < 20
rint (c.x) o OF 2% . x
print (origin.x) \)Se’&‘(‘ ,a(\’a“o e
)
A

variables

= don’t provide argument for self, Python does this
automatically

WHAT ISA METHOD?

= procedural attribute, like a function that works only
with this class

= Python always passes the object as the first argument

e convention is to use self as the name of the first
argument of all methods

= the “.” operator is used to access any attribute
* a data attribute of an object

* a method of an object

6.0001 LECTURE 8

Implementing the class

DEFINE A METHOD FOR THE
Coordinate CLASS

class Coordinate (object) :

e A
. N A O
def init (self, x, y): % ,Q«@
self.x = x ket «\© S
< (> eoS
.\,&_0 o Q’b ,aCC
self.y =y R 0&& _&39
) dgo
def distance (self| |other] : &ﬁﬁ
x diff sgq = (selfl.xrother.x)**2
y diff sgq = (self.y-other.y)**2

return (x diff sg + y diff sqg)**0.5

= other than sel f and dot notation, methods behave just

like functions (take params, do operations, return)

6.0001 LECTURE 8

Using the class

HOW TO USE A METHOD

def distance(self, other): &5
o)
code here

«C
Using the class:
" conventional way = equivalent to
c = Coordinate(3,4) c = Coordinate (3, 4)
zero = Coordinate (0, 0) zero = Coordinate (0,0)
print (- distance|(zero|)) print (Coordinatel/distance|(c, zero))

6.0001 LECTURE 8

PRINT REPRESENTATION OF
AN OBJECT

>>> ¢ = Coordinate(3,4)
>>> print (c)
< main .Coordinate object at 0x7fa9%918510488>

= uninformative print representation by default

= define a str method for a class

= Python callsthe str method when used with
print on your class object

= you choose what it does! Say that when we print a
Coordinate object, want to show

>>> print (c)
<3,4>

6.0001 LECTURE 8

Implementing the class

DEFINING YOUR OWN PRINT
METHOD

class Coordinate (object) :

def init (self, x, v):

self.x = x
self.y = vy
def distance(self, other):
x diff sg = (self.x-other.x)**2
y diff sg = (self.y-other.y)**2

return (x diff sg + y diff sq)**0.5
def str (self) :

¢ return|"<"+str(self.x)+","+str(self.y)+">"
0

\\
C_,Q \\06 ((\\)(D %
et S

6.0001 LECTURE 8

WRAPP
AROUN

Using the class

NG YOUR HEAD

D TYPES AND C

LASSES

= can ask for the type of an object instance &X$
>>> ¢ = Coordinate(3,4) (\O&,&\(\e/
>>> print (c) (e“)l\(\od . C‘C‘\‘:a
<3, 4> e ,‘0\3\@6
: o
>>> print (type(c)) e,d\)e 0(6\(\6&
<class main .Coordinate> | ™ (O
— — \2° S ot
: : ¢ e oy
" this makes sense since 0? o OF©
>>> print (Coordinate) 00(6\03 .\Sa‘\‘Q
<class main .Coordinate> aC &ec,\’é(D
>>> print (type (Coordinate)) O(d\‘\a
<type 'type'> 2P
"use isinstance () tocheckifanobjectisaCoordinate
>>> print (isinstance (c, Coordinate))

True

6.0001 LECTURE 8

SPECIAL OPERATORS

"+, -, =5, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#tbasic-customization

" like print, can override these to work with your class

= define them with double underscores before/after

__add (self, other) > self + other
__sub_ (self, other) > self - other
eq (self, other) > self == other
1t (self, other) > self < other
~_len (self) - len (self)
str (self) - print self

... and others

6.0001 LECTURE 8

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS

= create a new type to represent a number as a fraction

= internal representation is two integers
°* numerator
e denominator
= interface a.k.a. methods a.k.a how to interact with

Fraction objects

* add, subtract
* print representation, convert to a float

* invert the fraction

= the code for this is in the handout, check it out!

6.0001 LECTURE 8

THE POWER OF OOP

" bundle together objects that share
e common attributes and

* procedures that operate on those attributes

= use abstraction to make a distinction between how to
implement an object vs how to use the object

= build layers of object abstractions that inherit
behaviors from other classes of objects

= create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

