
OBJECT ORIENTED
PROGRAMMING
(download slides and .py files ŀƴŘ follow along!)

6.0001 LECTURE 8

6.0001 LECTURE 8 1

OBJECTS
 Python supports many different kinds of data

1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 each is an object, and every object has:
• a type

• an internal data representation (primitive or composite)

• a set of procedures for interaction with the object

 an object is an instance of a type
• 1234 is an instance of an int

• "hello" is an instance of a string

6.0001 LECTURE 8 2

OBJECT ORIENTED
PROGRAMMING (OOP)
 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

 can create new objects of some type

 can manipulate objects

 can destroy objects
• explicitly using del or just “forget” about them

• python system will reclaim destroyed or inaccessible
objects – called “garbage collection”

6.0001 LECTURE 8 3

WHAT ARE OBJECTS?
 objects are a data abstraction

that captures…

(1) an internal representation
• through data attributes

(2) an interface for
interacting with object

• through methods
(aka procedures/functions)

• defines behaviors but
hides implementation

6.0001 LECTURE 8 4

 how are lists represented internally? linked list of cells

L =

 how to manipulate lists?
• L[i], L[i:j], +

• len(), min(), max(), del(L[i])

• L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

 internal representation should be private

 correct behavior may be compromised if you manipulate
internal representation directly

EXAMPLE:
[1,2,3,4] has type list

6.0001 LECTURE 8 5

1 -> 2 -> 3 -> 4 ->

ADVANTAGES OF OOP
 bundle data into packages together with procedures
that work on them through well-defined interfaces

 divide-and-conquer development
• implement and test behavior of each class separately
• increased modularity reduces complexity

 classes make it easy to reuse code
• many Python modules define new classes
• each class has a separate environment (no collision on

function names)
• inheritance allows subclasses to redefine or extend a

selected subset of a superclass’ behavior

6.0001 LECTURE 8 6

 make a distinction between creating a class and
using an instance of the class

 creating the class involves
• defining the class name

• defining class attributes

• for example, someone wrote code to implement a list class

 using the class involves
• creating new instances of objects

• doing operations on the instances

• for example, L=[1,2] and len(L)

6.0001 LECTURE 8 7

Implementing the class Using the class

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

DEFINE YOUR OWN TYPES
 use the class keyword to define a new type

class Coordinate(object):

#define attributes here

 similar to def, indent code to indicate which statements are
part of the class definition

 the word object means that Coordinate is a Python
object and inherits all its attributes (inheritance next lecture)
• Coordinate is a subclass of object

• object is a superclass of Coordinate

6.0001 LECTURE 8 8

Implementing the class Using the class

WHAT ARE ATTRIBUTES?
 data and procedures that “belong” to the class

 data attributes
• think of data as other objects that make up the class

• for example, a coordinate is made up of two numbers

 methods (procedural attributes)
• think of methods as functions that only work with this class

• how to interact with the object

• for example you can define a distance between two
coordinate objects but there is no meaning to a distance
between two list objects

6.0001 LECTURE 8 9

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
 first have to define how to create an instance of
object

 use a special method called __init__ to
initialize some data attributes

class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

6.0001 LECTURE 8 10

Implementing the class Using the class

ACTUALLY CREATING AN
INSTANCE OF A CLASS

c = Coordinate(3,4)

origin = Coordinate(0,0)

print(c.x)

print(origin.x)

 data attributes of an instance are called instance
variables

 don’t provide argument for self, Python does this
automatically

6.0001 LECTURE 8 11

Implementing the class Using the class

WHAT IS A METHOD?
 procedural attribute, like a function that works only
with this class

 Python always passes the object as the first argument
• convention is to use self as the name of the first

argument of all methods

 the “.” operator is used to access any attribute
• a data attribute of an object

• a method of an object

6.0001 LECTURE 8 12

DEFINE A METHOD FOR THE
Coordinate CLASS

class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

 other than self and dot notation, methods behave just

like functions (take params, do operations, return)
6.0001 LECTURE 8 13

Implementing the class Using the class

HOW TO USE A METHOD
def distance(self, other):

code here

Using the class:
 conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

6.0001 LECTURE 8 14

 equivalent to

c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

Implementing the class Using the class

PRINT REPRESENTATION OF
AN OBJECT
>>> c = Coordinate(3,4)

>>> print(c)

<__main__.Coordinate object at 0x7fa918510488>

 uninformative print representation by default

 define a __str__ method for a class

 Python calls the __str__ method when used with
print on your class object

 you choose what it does! Say that when we print a
Coordinate object, want to show

>>> print(c)

<3,4>

6.0001 LECTURE 8 15

DEFINING YOUR OWN PRINT
METHOD
class Coordinate(object):

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):

return "<"+str(self.x)+","+str(self.y)+">"

6.0001 LECTURE 8 16

Implementing the class Using the class

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES
 can ask for the type of an object instance

>>> c = Coordinate(3,4)

>>> print(c)

<3,4>

>>> print(type(c))

<class __main__.Coordinate>

 this makes sense since
>>> print(Coordinate)

<class __main__.Coordinate>

>>> print(type(Coordinate))

<type 'type'>

 use isinstance() to check if an object is a Coordinate
>>> print(isinstance(c, Coordinate))

True

6.0001 LECTURE 8 17

Implementing the class Using the class

SPECIAL OPERATORS
 +, -, ==, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

 like print, can override these to work with your class

 define them with double underscores before/after
__add__(self, other)  self + other

__sub__(self, other)  self - other

__eq__(self, other)  self == other

__lt__(self, other)  self < other

__len__(self)  len(self)

__str__(self)  print self

... and others

6.0001 LECTURE 8 18

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS
 create a new type to represent a number as a fraction

 internal representation is two integers
• numerator

• denominator

 interface a.k.a. methods a.k.a how to interact with
Fraction objects
• add, subtract

• print representation, convert to a float

• invert the fraction

 the code for this is in the handout, check it out!

6.0001 LECTURE 8 19

THE POWER OF OOP
 bundle together objects that share
• common attributes and

• procedures that operate on those attributes

 use abstraction to make a distinction between how to
implement an object vs how to use the object

 build layers of object abstractions that inherit
behaviors from other classes of objects

 create our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8 20

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

