
SEARCHING AND
SORTING
ALGORITHMS
(download slides and .py files and follow along!)

6.0001 LECTURE 12

6.0001	LECTURE	12	 1	

SEARCH ALGORITHMS

§	search	algorithm	–	method	for	finding	an	item	or	
group	of	items	with	specific	properAes	within	a	
collecAon	of	items	
§	collecAon	could	be	implicit	
◦ example	–	find	square	root	as	a	search	problem	
◦ exhausAve	enumeraAon	
◦ bisecAon	search	
◦ Newton-Raphson	

§	collecAon	could	be	explicit	
◦ example	–	is	a	student	record	in	a	stored	collecAon	of	
data?	

6.0001	LECTURE	12	 2	

SEARCHING ALGORITHMS

§	linear	search	
• 	brute	force	search	(aka	BriAsh	Museum	algorithm)	
• 	list	does	not	have	to	be	sorted	

§	bisecAon	search	
• 	list	MUST	be	sorted	to	give	correct	answer	
• 	saw	two	different	implementaAons	of	the	algorithm	

6.0001	LECTURE	12	 3	

LINEAR SEARCH
ON UNSORTED LIST: RECAP

def linear_search(L, e):
 found = False
 for i in range(len(L)):

if e == L[i]:
found = True

 return found

	

§	must	look	through	all	elements	to	decide	it’s	not	there	

§	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	

§	overall	complexity	is	O(n)	–	where	n	is	len(L)		

6.0001	LECTURE	12	 4	

LINEAR SEARCH
ON SORTED LIST: RECAP

def search(L, e):
 for i in range(len(L)):
 if L[i] == e:
 return True
 if L[i] > e:
 return False
 return False

	

§ 	must	only	look	unAl	reach	a	number	greater	than	e	

§ 	O(len(L))	for	the	loop	*	O(1)	to	test	if	e	==	L[i]	
§ 	overall	complexity	is	O(n)	–	where	n	is	len(L)		

6.0001	LECTURE	12	 5	

USE BISECTION SEARCH:
RECAP

1. Pick	an	index,	i,	that	divides	list	in	half	
2. Ask	if	L[i] == e
3. If	not,	ask	if	L[i] is	larger	or	smaller	than	e
4. Depending	on	answer,	search	le_	or	right	half	of L for	e

A	new	version	of	a	divide-and-conquer	algorithm	
§ Break	into	smaller	version	of	problem	(smaller	list),	plus	

some	simple	operaAons	
§ Answer	to	smaller	version	is	answer	to	original	problem	

6.0001	LECTURE	12	 6	

def bisect_search2(L, e):
 def bisect_search_helper(L, e, low, high):

if high == low:
return L[low] == e

mid = (low + high)//2
if L[mid] == e:

return True
elif L[mid] > e:

if low == mid: #nothing left to search
return False

else:
return bisect_search_helper(L, e, low, mid - 1)

else:
return bisect_search_helper(L, e, mid + 1, high)

 if len(L) == 0:
return False

 else:
return bisect_search_helper(L, e, 0, len(L) - 1)

BISECTION SEARCH
IMPLEMENTATION: RECAP

6.0001	LECTURE	12	 7	

COMPLEXITY OF BISECTION
SEARCH: RECAP

§	bisect_search2	and	its	helper	
• 	O(log	n)	bisecAon	search	calls	
• reduce	size	of	problem	by	factor	of	2	on	each	step	
• 	pass	list	and	indices	as	parameters	
• 	list	never	copied,	just	re-passed	as	pointer	
• 	constant	work	inside	funcAon	
• 	à	O(log	n)	

6.0001	LECTURE	12	 8	

SEARCHING A SORTED LIST
-- n is len(L)

§	using	linear	search,	search	for	an	element	is	O(n)	

§	using	binary	search,	can	search	for	an	element	in	O(log	n)	
• 	assumes	the	list	is	sorted!	

§	when	does	it	make	sense	to	sort	first	then	search?	
• 	SORT	+	O(log n)	<	O(n) 		à	SORT	<	O(n)	–	O(log n)	
• 	when	sorAng	is	less	than	O(n)	

•	NEVER	TRUE!	
• to	sort	a	collecEon	of	n	elements	must	look	at	each	one	at	
least	once!	

6.0001	LECTURE	12	 9	

AMORTIZED COST
-- n is len(L)

§ 	why	bother	sorAng	first?	
§ 	in	some	cases,	may	sort	a	list	once	then	do	many	
searches	

§ 	AMORTIZE	cost	of	the	sort	over	many	searches	

§ 	SORT	+	K*O(log n)	<	K*O(n)	 		
		à	for	large	K,	SORT	Eme	becomes	irrelevant,	if	

cost	of	sorAng	is	small	enough	

6.0001	LECTURE	12	 10	

SORT ALGORITHMS

§	Want	to	efficiently	sort	a	list	of	entries	(typically	
numbers)	

§	Will	see	a	range	of	methods,	including	one	that	is	
quite	efficient	

6.0001	LECTURE	12	 11	

MONKEY SORT

§	aka	bogosort,	stupid	
sort,	slowsort,	
permutaAon	sort,	
shotgun	sort	

§	to	sort	a	deck	of	cards	
• 	throw	them	in	the	air	
• 	pick	them	up	
• 	are	they	sorted?		
• 	repeat	if	not	sorted	

6.0001	LECTURE	12	 12	

COMPLEXITY OF BOGO SORT

def bogo_sort(L):
 while not is_sorted(L):
 random.shuffle(L)

§ 	best	case:	O(n)	where	n	is	len(L)	to	check	if	sorted	
§ 	worst	case:	O(?)	it	is	unbounded	if	really	unlucky	

6.0001	LECTURE	12	 13	

BUBBLE SORT

§ compare	consecuEve	pairs
of	elements	
§ swap	elements	in	pair	such
that	smaller	is	first	
§ when	reach	end	of	list,
start	over	again	
§ stop	when	no	more	swaps
have	been	made	
§ largest	unsorted	element
always	at	end	a_er	pass,	so	

6.0001	LECTURE	12	 14	

at	most	n	passes	
CC-BY	Hydrargyrum		
https://commons.wikimedia.org/wiki/File:Bubble_sort_animation.gif�

https://commons.wikimedia.org/wiki/File:Bubble_sort_animation.gif

COMPLEXITY OF BUBBLE SORT

def bubble_sort(L):
 swap = False
 while not swap:

swap = True
for j in range(1, len(L)):

if L[j-1] > L[j]:
swap = False
temp = L[j]
L[j] = L[j-1]
L[j-1] = temp

§	inner	for	loop	is	for	doing	the	comparisons
§	outer	while	loop	is	for	doing	mulEple	passes	unAl	no	more	
swaps	
§	O(n2)	where	n	is	len(L) 	
	to	do	len(L)-1	comparisons	and	len(L)-1	passes	

6.0001	LECTURE	12	 15	

SELECTION SORT

§ 	first	step	
•  	extract	minimum	element		
•  	swap	it	with	element	at	index	0	

§ 	subsequent	step	
•  	in	remaining	sublist,	extract	minimum	element	
•  	swap	it	with	the	element	at	index	1		

§ 	keep	the	le_	porAon	of	the	list	sorted		
•  	at	i’th	step,	first	i	elements	in	list	are	sorted	
•  	all	other	elements	are	bigger	than	first	i	elements	

6.0001	LECTURE	12	 16	

ANALYZING SELECTION SORT

§	loop	invariant	
◦ given	prefix	of	list	L[0:i]	and	suffix	L[i+1:len(L)],	then	
prefix	is	sorted	and	no	element	in	prefix	is	larger	than	
smallest	element	in	suffix	
1. base	case:	prefix	empty,	suffix	whole	list	–	invariant	

true	
2. inducAon	step:	move	minimum	element	from	suffix	

to	end	of	prefix.		Since	invariant	true	before	move,	
prefix	sorted	a_er	append	

3. when	exit,	prefix	is	enAre	list,	suffix	empty,	so	sorted	

6.0001	LECTURE	12	 17	

COMPLEXITY OF SELECTION
SORT

def selection_sort(L):
 suffixSt = 0
 while suffixSt != len(L):

for i in range(suffixSt, len(L)):
if L[i] < L[suffixSt]:

L[suffixSt], L[i] = L[i], L[suffixSt]
suffixSt += 1	

§	outer	loop	executes	len(L)	Ames	

§	inner	loop	executes	len(L)	–	i	Ames	

§	complexity	of	selecAon	sort	is	O(n2)	where	n	is	len(L)	

6.0001	LECTURE	12	 18	

MERGE SORT

§	use	a	divide-and-conquer	approach:	

1. if	list	is	of	length	0	or	1,	already	sorted	
2. if	list	has	more	than	one	element,	split	into	two	lists,	

and	sort	each	
3. merge	sorted	sublists	

1. look	at	first	element	of	each,	move	smaller	to	end	of	the	
result	

2. when	one	list	empty,	just	copy	rest	of	other	list	

6.0001	LECTURE	12	 19

MERGE SORT

§ 	divide	and	conquer	

§ 	split	list	in	half	unAl	have	sublists	of	only	1	element	

unsorted	

unsorted	 unsorted	

unsorted	 unsorted	 unsorted	 unsorted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

unsor
ted	

merge	 merge	 merge	 merge	 merge	 merge	 merge	 merge	

6.0001	LECTURE	12	 22	

MERGE SORT

§ 	divide	and	conquer	

	

	

§ 	merge	such	that	sublists	will	be	sorted	aQer	merge	

unsorted	

unsorted	 unsorted	

unsorted	 unsorted	 unsorted	 unsorted	

sort	 sort	 sort	 sort	 sort	 sort	 sort	 sort	

merge	 merge	 merge	 merge	

6.0001	LECTURE	12	 23	

MERGE SORT

§	divide	and	conquer	

§	merge	sorted	sublists	

§	sublists	will	be	sorted	a_er	merge	

unsorted	

unsorted	 unsorted	

sorted	 sorted	 sorted	 sorted	

merge	 merge	

6.0001	LECTURE	12	 22	

MERGE SORT

§ divide	and	conquer

§merge	sorted	sublists

§	sublists	will	be	sorted	a_er	merge	

unsorted	

sorted	 sorted	

merge	

6.0001	LECTURE	12	 23	

MERGE SORT

§	divide	and	conquer	–	done!	

sorted	

6.0001	LECTURE	12	 24	

EXAMPLE OF MERGING

Le_	in	list	1															Le_	in	list	2						Compare									Result	
[1,5,12,18,19,20]					[2,3,4,17]									1,	2																			[]	
[5,12,18,19,20]									[2,3,4,17]									5,	2																		[1]	
[5,12,18,19,20]									[3,4,17]												5,	3																		[1,2]	
[5,12,18,19,20]									[4,17]															5,	4																		[1,2,3]	
[5,12,18,19,20]									[17]																		5,	17																[1,2,3,4]	
[12,18,19,20]												[17]																		12,	17														[1,2,3,4,5]	
[18,19,20]																		[17]																		18,	17													[1,2,3,4,5,12]	
[18,19,20]																		[]																						18,	--															[1,2,3,4,5,12,17]	
[]																																		[]																																														[1,2,3,4,5,12,17,18,19,20]	

6.0001	LECTURE	12	 25	

MERGING SUBLISTS STEP

def merge(left, right):
 result = []
 i,j = 0,0
 while i < len(left) and j < len(right):

if left[i] < right[j]:
result.append(left[i])
i += 1

else:
result.append(right[j])
j += 1

 while (i < len(left)):
result.append(left[i])
i += 1

 while (j < len(right)):
result.append(right[j])
j += 1

 return result

6.0001	LECTURE	12	 26	

COMPLEXITY OF
MERGING SUBLISTS STEP

§	go	through	two	lists,	only	one	pass	

§	compare	only	smallest	elements	in	each	sublist	

§	O(len(le_)	+	len(right))	copied	elements	

§	O(len(longer	list))	comparisons	

§	linear	in	length	of	the	lists	

6.0001	LECTURE	12	 27	

MERGE SORT ALGORITHM
-- RECURSIVE

def merge_sort(L):
 if len(L) < 2:

return L[:]
 else:

middle = len(L)//2
left = merge_sort(L[:middle])
right = merge_sort(L[middle:])
return merge(left, right)

§	divide	list	successively	into	halves	

§	depth-first	such	that	conquer	smallest	pieces	down	
one	branch	first	before	moving	to	larger	pieces	

6.0001	LECTURE	12	 28	

8	4	1	6	5	9	2	0	
	
	
	

8	4	1	6	
	
	
	

8	4		
	
	
	

8		
	

base	
case	

4	
	

base	
case	

1	6	
	
	
	

1		
	

base	
case	

6	
	

base	
case	

Merge	
4	8	

Merge	
4	8		&	1	6	
1	4	6	8	

Merge	
1	6	

5	9	2	0	
	
	
	

5	9	
	
	
	

5		
	

base	
case	

9	
	

base	
case	

2	0	
	
	
	

2		
	

base	
case	

0	
	

base	
case	

Merge	
5	9	

Merge	
5	9		&	0	2	
0	2	5	9	

Merge	
0	2	

Merge	
	1	4	6	8		&	0	2	5	9	
0	1	2	4	5	6	8	9	

6.0001	LECTURE	12	 29	

COMPLEXITY OF MERGE SORT

§	at	first	recursion	level	
• 	n/2	elements	in	each	list	
• 	O(n)	+	O(n)	=	O(n)	where	n	is	len(L)	

§	at	second	recursion	level	
• 	n/4	elements	in	each	list	
• 	two	merges	à	O(n)	where	n	is	len(L)	

§	each	recursion	level	is	O(n)	where	n	is	len(L)		
§	dividing	list	in	half	with	each	recursive	call	
• O(log(n))	where	n	is	len(L)	

§	overall	complexity	is	O(n	log(n))	where	n	is	len(L)	

6.0001	LECTURE	12	 30	

SORTING SUMMARY
-- n is len(L)

§	bogo	sort	
• 	randomness,	unbounded	O()	

§	bubble	sort	
• 	O(n2)	

§	selecAon	sort	
• 	O(n2)	
• 	guaranteed	the	first	i	elements	were	sorted	

§	merge	sort	
• 	O(n	log(n))	

§	O(n	log(n))	is	the	fastest	a	sort	can	be	

6.0001	LECTURE	12	 31	

WHAT HAVE WE SEEN
IN 6.0001?

6.0001	LECTURE	12	 32	

KEY TOPICS

§	represent	knowledge	with	data	structures	

§	iteraEon	and	recursion	as	computaAonal	metaphors	

§	abstracEon	of	procedures	and	data	types	

§	organize	and	modularize	systems	using	object	classes	
and	methods	

§	different	classes	of	algorithms,	searching	and	sorAng	

§	complexity	of	algorithms	

6.0001	LECTURE	12	 33	

OVERVIEW OF COURSE

§	learn	computaAonal	modes	of	
thinking	

§	begin	to	master	the	art	of	
computaAonal	problem	solving	

§	make	computers	do	what	you	want	
them	to	do	

6.0001	LECTURE	12	 34	

Hope	we	have	started	you	down	the	
path	to	being	able	to	think	and	act	
like	a	computer	scienAst	

sgoe12
Rectangle

gkap11
Line

WHAT DO COMPUTER
SCIENTISTS DO?

§	they	think	computaAonally	
◦ 	abstracAons,	algorithms,	
automated	execuAon	

§	just	like	the	three	r’s:		reading,	
‘riting,	and	‘rithmeAc	–	
computaAonal	thinking	is	
becoming	a	fundamental	skill	that
every	well-educated	person	will	
need	

35

I											6.0001	

Ada	Lovelace	Alan	Turing	

6.0001	LECTURE	12	

Image in the Public
Domain, courtesy of
Wikipedia Commons.

Image in the Public
Domain, courtesy of
Wikipedia Commons.

gkap11
Line

https://en.wikipedia.org/wiki/Alan_Turing#/media/File:Alan_Turing_Aged_16.jpg
https://en.wikipedia.org/wiki/Ada_Lovelace#/media/File:Ada_Lovelace.jpg

THE THREE A’S OF
COMPUTATIONAL THINKING

§	abstracAon	
◦ choosing	the	right	abstracAons	
◦ operaAng	in	mulAple	layers	of	abstracAon	
simultaneously	

◦ defining	the	relaAonships	between	the	abstracAon	
layers	

§	automaAon	
◦ think	in	terms	of	mechanizing	our	abstracAons	
◦ mechanizaAon	is	possible	–	because	we	have	precise	
and	exacAng	notaAons	and	models;	and	because	there	is	
some	“machine”	that	can	interpret	our	notaAons	

§	algorithms	
◦ language	for	describing	automated	processes	
◦ also	allows	abstracAon	of	details	
◦ language	for	communicaAng	ideas	&	processes	

36 6.0001	LECTURE	12	

Person	

MITPerson	

Student	

UG	 Grad	

ASPECTS OF COMPUTATIONAL
THINKING

§	how	difficult	is	this	problem	
and	how	best	can	I	solve	it?	
◦ theoreAcal	computer	science	
gives	precise	meaning	to	these	
and	related	quesAons	and	their	
answers	

§	thinking	recursively	
◦ reformulaAng	a	seemingly	
difficult	problem	into	one	
which	we	know	how	to	solve	

◦ reduc�tion,	embedding,	
transformation,� 	simulaAon	

37

O(log	n)	;	O(n)	;		
O(n	log	n)	;		
O(n2);	O(cn)		

6.0001	LECTURE	12	

Image Licensed CC-BY, Courtesy of Robson# on Flickr.	

gkap11
Line

gkap11
Rectangle

https://www.flickr.com/photos/_robson_/8952213840

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	lec12_sorting
	11x8 5 Coversheet 24 902

